
## **Thomas Decker**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2242603/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | JAK-STAT Signaling: From Interferons to Cytokines. Journal of Biological Chemistry, 2007, 282, 20059-20063.                                                                                                     | 1.6  | 1,057     |
| 2  | Type I Interferon Inhibits Interleukin-1 Production and Inflammasome Activation. Immunity, 2011, 34, 213-223.                                                                                                   | 6.6  | 810       |
| 3  | Serine phosphorylation of STATs. Oncogene, 2000, 19, 2628-2637.                                                                                                                                                 | 2.6  | 790       |
| 4  | The Yin and Yang of type I interferon activity in bacterial infection. Nature Reviews Immunology, 2005, 5, 675-687.                                                                                             | 10.6 | 410       |
| 5  | Partial Impairment of Cytokine Responses in Tyk2-Deficient Mice. Immunity, 2000, 13, 549-560.                                                                                                                   | 6.6  | 375       |
| 6  | GAS Elements: A Few Nucleotides with a Major Impact on Cytokine-Induced Gene Expression. Journal of<br>Interferon and Cytokine Research, 1997, 17, 121-134.                                                     | 0.5  | 373       |
| 7  | Tracking heavy water (D <sub>2</sub> O) incorporation for identifying and sorting active microbial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E194-203. | 3.3  | 359       |
| 8  | Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nature<br>Immunology, 2003, 4, 471-477.                                                                             | 7.0  | 337       |
| 9  | Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME Journal, 2012, 6, 2091-2106.                                                                   | 4.4  | 291       |
| 10 | The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO Journal, 2008, 27, 2135-2146.                                                           | 3.5  | 276       |
| 11 | Canonical and Non-Canonical Aspects of JAK–STAT Signaling: Lessons from Interferons for Cytokine<br>Responses. Frontiers in Immunology, 2017, 8, 29.                                                            | 2.2  | 254       |
| 12 | Role of Tissue Protection in Lethal Respiratory Viral-Bacterial Coinfection. Science, 2013, 340, 1230-1234.                                                                                                     | 6.0  | 243       |
| 13 | Phosphorylation of the Stat1 Transactivation Domain Is Required for Full-Fledged IFN-Î <sup>3</sup> -Dependent<br>Innate Immunity. Immunity, 2003, 19, 793-802.                                                 | 6.6  | 239       |
| 14 | Negative and Positive Regulation of Gene Expression by Mouse Histone Deacetylase1. Molecular and Cellular Biology, 2006, 26, 7913-7928.                                                                         | 1.1  | 238       |
| 15 | <i>Listeria monocytogenes</i> induces IFNβ expression through an IFI16â€; cGAS―and STINGâ€dependent pathway. EMBO Journal, 2014, 33, 1654-1666.                                                                 | 3.5  | 232       |
| 16 | The regulation of inflammation by interferons and their STATs. Jak-stat, 2013, 2, e23820.                                                                                                                       | 2.2  | 215       |
| 17 | Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4720-4725.       | 3.3  | 210       |
| 18 | IFN Regulatory Factor 3-Dependent Induction of Type I IFNs by Intracellular Bacteria Is Mediated by a TLR- and Nod2-Independent Mechanism. Journal of Immunology, 2004, 173, 7416-7425.                         | 0.4  | 195       |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nature Communications, 2020, 11, 5104.                                                                                   | 5.8 | 177       |
| 20 | Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME Journal, 2014, 8, 1101-1114.                                                                                   | 4.4 | 174       |
| 21 | IFNs and STATs in innate immunity to microorganisms. Journal of Clinical Investigation, 2002, 109, 1271-1277.                                                                                                                               | 3.9 | 172       |
| 22 | Sustained Generation of Nitric Oxide and Control of Mycobacterial Infection Requires Argininosuccinate Synthase 1. Cell Host and Microbe, 2012, 12, 313-323.                                                                                | 5.1 | 154       |
| 23 | Regulatory Networks Involving STATs, IRFs, and NFκB in Inflammation. Frontiers in Immunology, 2018, 9, 2542.                                                                                                                                | 2.2 | 153       |
| 24 | Nonconventional Initiation Complex Assembly by STAT and NF-κB Transcription Factors Regulates Nitric<br>Oxide Synthase Expression. Immunity, 2010, 33, 25-34.                                                                               | 6.6 | 151       |
| 25 | Production of Type I IFN Sensitizes Macrophages to Cell Death Induced by <i>Listeria monocytogenes</i> . Journal of Immunology, 2002, 169, 6522-6529.                                                                                       | 0.4 | 144       |
| 26 | A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nature Communications, 2019, 10, 2921.                                                                                                         | 5.8 | 137       |
| 27 | Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN-γ, but not<br>IFN-α, signaling. EMBO Journal, 1999, 18, 2480-2488.                                                                              | 3.5 | 131       |
| 28 | p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12859-12864.                                        | 3.3 | 119       |
| 29 | Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions.<br>Nature Immunology, 2016, 17, 1361-1372.                                                                                                 | 7.0 | 114       |
| 30 | IFNs and STATs in innate immunity to microorganisms. Journal of Clinical Investigation, 2002, 109, 1271-1277.                                                                                                                               | 3.9 | 112       |
| 31 | Distinct modes of action applied by transcription factors STAT1 and IRF1 to initiate transcription of the IFN-Â-inducible gbp2 gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2849-2854. | 3.3 | 110       |
| 32 | STAT1 plays a role in TLR signal transduction and inflammatory responses. Immunology and Cell<br>Biology, 2014, 92, 761-769.                                                                                                                | 1.0 | 106       |
| 33 | Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing Recurring Colitis. Frontiers in Microbiology, 2015, 6, 1408.                                                                                     | 1.5 | 106       |
| 34 | Conventional Dendritic Cells Mount a Type I IFN Response against <i>Candida</i> spp. Requiring Novel<br>Phagosomal TLR7-Mediated IFN-β Signaling. Journal of Immunology, 2011, 186, 3104-3112.                                              | 0.4 | 104       |
| 35 | CDK8-Mediated STAT1-S727 Phosphorylation Restrains NK Cell Cytotoxicity and Tumor Surveillance.<br>Cell Reports, 2013, 4, 437-444.                                                                                                          | 2.9 | 104       |
| 36 | Intracellular bacteria engage a STING–TBK1–MVB12b pathway to enable paracrine cGAS–STING<br>signalling. Nature Microbiology, 2019, 4, 701-713.                                                                                              | 5.9 | 100       |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Characterization of the Interferon-Producing Cell in Mice Infected with Listeria monocytogenes. PLoS<br>Pathogens, 2009, 5, e1000355.                                                                                                                     | 2.1 | 94        |
| 38 | <i>Listeria monocytogenes</i> Modulates Macrophage Cytokine Responses Through STAT Serine<br>Phosphorylation and the Induction of Suppressor of Cytokine Signaling 3. Journal of Immunology,<br>2001, 166, 466-472.                                       | 0.4 | 91        |
| 39 | Nod1 and Nod2 induce CCL5/RANTES through the NFâ€ÎºB pathway. European Journal of Immunology, 2007, 37, 2499-2508.                                                                                                                                        | 1.6 | 75        |
| 40 | STAT1-cooperative DNA binding distinguishes type 1 from type 2 interferon signaling. Nature<br>Immunology, 2014, 15, 168-176.                                                                                                                             | 7.0 | 75        |
| 41 | Interferons Direct an Effective Innate Response to Legionella pneumophila Infection. Journal of<br>Biological Chemistry, 2009, 284, 30058-30066.                                                                                                          | 1.6 | 70        |
| 42 | The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity. PLoS Pathogens, 2018, 14, e1007397.                                                                                                                                     | 2.1 | 65        |
| 43 | Phosphorylation of the Stat1 transactivating domain is required for the response to type I interferons. EMBO Reports, 2003, 4, 368-373.                                                                                                                   | 2.0 | 61        |
| 44 | Regulation of NO Synthesis, Local Inflammation, and Innate Immunity to Pathogens by BET Family<br>Proteins. Molecular and Cellular Biology, 2014, 34, 415-427.                                                                                            | 1.1 | 61        |
| 45 | Noncanonical Effects of IRF9 in Intestinal Inflammation: More than Type I and Type III Interferons.<br>Molecular and Cellular Biology, 2015, 35, 2332-2343.                                                                                               | 1.1 | 61        |
| 46 | Cooperative Transcriptional Activation of Antimicrobial Genes by STAT and NF-ήB Pathways by Concerted Recruitment of the Mediator Complex. Cell Reports, 2015, 12, 300-312.                                                                               | 2.9 | 58        |
| 47 | Both TLR2 and TRIF Contribute to Interferon-Î <sup>2</sup> Production during Listeria Infection. PLoS ONE, 2012, 7, e33299.                                                                                                                               | 1.1 | 57        |
| 48 | Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse. Journal of Experimental Medicine, 2009, 206, 877-892.                                                                                          | 4.2 | 50        |
| 49 | Response to interferons and antibacterial innate immunity in the absence of tyrosineâ€phosphorylated <scp>STAT</scp> 1. EMBO Reports, 2016, 17, 367-382.                                                                                                  | 2.0 | 50        |
| 50 | Conditional Stat1 Ablation Reveals the Importance of Interferon Signaling for Immunity to Listeria monocytogenes Infection. PLoS Pathogens, 2012, 8, e1002763.                                                                                            | 2.1 | 49        |
| 51 | Jak2-Stat5 Interactions Analyzed in Yeast. Journal of Biological Chemistry, 1998, 273, 12567-12575.                                                                                                                                                       | 1.6 | 46        |
| 52 | The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Reports, 2016, 15, 1481-1492.                                                                                                                                        | 2.9 | 46        |
| 53 | Differential Effects of CpG DNA on IFN-β Induction and STAT1 Activation in Murine Macrophages versus<br>Dendritic Cells: Alternatively Activated STAT1 Negatively Regulates TLR Signaling in Macrophages.<br>Journal of Immunology, 2007, 179, 3495-3503. | 0.4 | 44        |
| 54 | Colony-stimulating factors and interferon-Î <sup>3</sup> activate a protein related to MGF-Stat 5 to cause formation of the differentiation-induced factor in myeloid cells. FEBS Letters, 1995, 360, 29-33.                                              | 1.3 | 42        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Route of Infection Determines the Impact of Type I Interferons on Innate Immunity to Listeria monocytogenes. PLoS ONE, 2013, 8, e65007.                                                                               | 1.1 | 42        |
| 56 | Type I interferons as mediators of immune adjuvants for T- and B cell-dependent acquired immunity.<br>Vaccine, 2009, 27, G17-G20.                                                                                     | 1.7 | 40        |
| 57 | Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis.<br>Journal of Immunology, 2015, 195, 5011-5024.                                                                  | 0.4 | 40        |
| 58 | Twins with different personalities: STAT5B—but not STAT5A—has a key role in BCR/ABL-induced<br>leukemia. Leukemia, 2019, 33, 1583-1597.                                                                               | 3.3 | 40        |
| 59 | Putting the brakes on mammary tumorigenesis: Loss of STAT1 predisposes to intraepithelial neoplasias.<br>Oncotarget, 2011, 2, 1043-1054.                                                                              | 0.8 | 40        |
| 60 | Type I interferons have opposing effects during the emergence and recovery phases of colitis.<br>European Journal of Immunology, 2014, 44, 2749-2760.                                                                 | 1.6 | 39        |
| 61 | Contribution of a TANK-Binding Kinase 1-Interferon (IFN) Regulatory Factor 7 Pathway to IFN-Â-Induced<br>Gene Expression. Molecular and Cellular Biology, 2012, 32, 1032-1043.                                        | 1.1 | 37        |
| 62 | CytoplasmicListeria monocytogenesstimulates IFN-β synthesis without requiring the adapter protein<br>MAVS. FEBS Letters, 2006, 580, 2341-2346.                                                                        | 1.3 | 36        |
| 63 | IFN-β Increases Listeriolysin O-Induced Membrane Permeabilization and Death of Macrophages. Journal of Immunology, 2008, 180, 4116-4123.                                                                              | 0.4 | 35        |
| 64 | Type I IFN are host modulators of strain-specific Listeria monocytogenes virulence. Cellular<br>Microbiology, 2008, 10, 1116-1129.                                                                                    | 1.1 | 34        |
| 65 | STAT1β Is Not Dominant Negative and Is Capable of Contributing to Gamma Interferon-Dependent Innate<br>Immunity. Molecular and Cellular Biology, 2014, 34, 2235-2248.                                                 | 1.1 | 34        |
| 66 | Dendritic Cells Require STAT-1 Phosphorylated at Its Transactivating Domain for the Induction of Peptide-Specific CTL. Journal of Immunology, 2009, 183, 2286-2293.                                                   | 0.4 | 31        |
| 67 | LipA, a Tyrosine and Lipid Phosphatase Involved in the Virulence of Listeria monocytogenes. Infection and Immunity, 2011, 79, 2489-2498.                                                                              | 1.0 | 31        |
| 68 | Interferon-Î <sup>3</sup> regulates expression of a novel keratin classe I gene. European Journal of Immunology,<br>1992, 22, 975-979.                                                                                | 1.6 | 30        |
| 69 | Novel functions of type I interferons revealed by infection studies with Listeria monocytogenes.<br>Immunobiology, 2008, 213, 889-897.                                                                                | 0.8 | 30        |
| 70 | Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death<br>of Macrophages upon <i>Listeria monocytogenes</i> Infection. Infection and Immunity, 2008, 76,<br>1649-1656. | 1.0 | 30        |
| 71 | Different STAT Transcription Complexes Drive Early and Delayed Responses to Type I IFNs. Journal of Immunology, 2015, 195, 210-216.                                                                                   | 0.4 | 30        |
| 72 | Jaks, Stats and the Immune System. Immunobiology, 1997, 198, 99-111.                                                                                                                                                  | 0.8 | 27        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Generation of mice with a conditional Stat1 null allele. Transgenic Research, 2012, 21, 217-224.                                                                                                                       | 1.3 | 26        |
| 74 | Enhanced Antiviral and Antiproliferative Properties of a STAT1 Mutant Unable to Interact with the Protein Kinase PKR. Journal of Biological Chemistry, 2001, 276, 13727-13737.                                         | 1.6 | 25        |
| 75 | STAT1 regulates marginal zone B cell differentiation in response to inflammation and infection with blood-borne bacteria. Journal of Experimental Medicine, 2016, 213, 3025-3039.                                      | 4.2 | 23        |
| 76 | Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight, 2020, 5, .                                                                                                             | 2.3 | 23        |
| 77 | Cutibacterium acnes Infection Induces Type I Interferon Synthesis Through the cGAS-STING Pathway.<br>Frontiers in Immunology, 2020, 11, 571334.                                                                        | 2.2 | 23        |
| 78 | Antigen receptor signal transduction: activating and inhibitory antigen receptors regulate STAT1 serine phosphorylation. European Journal of Immunology, 2000, 30, 1851-1860.                                          | 1.6 | 18        |
| 79 | The Tyrosine Kinase Btk Regulates the Macrophage Response to Listeria monocytogenes Infection. PLoS ONE, 2013, 8, e60476.                                                                                              | 1.1 | 18        |
| 80 | The AP-1 transcription factors c-Jun and JunB are essential for CD8α conventional dendritic cell identity. Cell Death and Differentiation, 2021, 28, 2404-2420.                                                        | 5.0 | 18        |
| 81 | Sepsis: avoiding its deadly toll. Journal of Clinical Investigation, 2004, 113, 1387-1389.                                                                                                                             | 3.9 | 18        |
| 82 | Interferons reshape the 3D conformation and accessibility of macrophage chromatin. IScience, 2022, 25, 103840.                                                                                                         | 1.9 | 18        |
| 83 | Mycobacteriaâ€induced granuloma necrosis depends on IRFâ€1. Journal of Cellular and Molecular<br>Medicine, 2009, 13, 2069-2082.                                                                                        | 1.6 | 16        |
| 84 | The C-Terminal Transactivation Domain of STAT1 Has a Gene-Specific Role in Transactivation and Cofactor Recruitment. Frontiers in Immunology, 2018, 9, 2879.                                                           | 2.2 | 14        |
| 85 | Novel non-canonical role of STAT1 in Natural Killer cell cytotoxicity. Oncolmmunology, 2016, 5, e1186314.                                                                                                              | 2.1 | 13        |
| 86 | Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development. Journal of Immunology, 2020, 204, 2641-2650.                                            | 0.4 | 13        |
| 87 | Sepsis: avoiding its deadly toll. Journal of Clinical Investigation, 2004, 113, 1387-1389.                                                                                                                             | 3.9 | 13        |
| 88 | Fasting metabolism modulates the interleukin-12/interleukin-10 cytokine axis. PLoS ONE, 2017, 12, e0180900.                                                                                                            | 1.1 | 12        |
| 89 | The early interferon catches the SARS-CoV-2. Journal of Experimental Medicine, 2021, 218, .                                                                                                                            | 4.2 | 8         |
| 90 | Proâ€atherogenic actions of signal transducer and activator of transcription 1 serine 727<br>phosphorylation in LDL receptor deficient mice via modulation of plaque inflammation. FASEB Journal,<br>2021, 35, e21892. | 0.2 | 6         |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | How Stats Interact with the Molecular Machinery of Transcriptional Activation. , 2012, , 65-89.                                                                                                                                |     | 3         |
| 92 | Listeria monocytogenes infection rewires host metabolism with regulatory input from type I interferons. PLoS Pathogens, 2021, 17, e1009697.                                                                                    | 2.1 | 3         |
| 93 | The Cyclin-Dependent Kinase 8 (CDK8) Inhibitor DCA Promotes a Tolerogenic Chemical<br>Immunophenotype in CD4 <sup>+</sup> T Cells via a Novel CDK8-GATA3-FOXP3 Pathway. Molecular and<br>Cellular Biology, 2021, 41, e0008521. | 1.1 | 3         |
| 94 | Regulation of STATs by Posttranslational Modifications. , 2003, , 207-222.                                                                                                                                                     |     | 1         |
| 95 | Novel paradigms in vaccine development: from small pox eradication to therapeutic vaccines.<br>Biological Chemistry, 2008, 389, 455-456.                                                                                       | 1.2 | Ο         |
| 96 | Unexpected role of STAT1 serine727 for NK cell function. BMC Pharmacology, 2009, 9, .                                                                                                                                          | 0.4 | 0         |
| 97 | Editorial. Vaccine, 2012, 30, 4299-4300.                                                                                                                                                                                       | 1.7 | Ο         |