Shengxian Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2241684/publications.pdf

Version: 2024-02-01

		147801	138484
133	4,106	31	58
papers	citations	h-index	g-index
136	136	136	2271
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Angiography-based coronary flow reserve: The feasibility of automatic computation by artificial intelligence. Cardiology Journal, 2023, 30, 369-378.	1.2	6
2	Comprehensive appraisal of cardiac motion artefact in optical coherence tomography. Cardiology Journal, 2023, 30, 543-555.	1.2	4
3	Optical coherence tomography and coronary revascularization: from indication to procedural optimization. Trends in Cardiovascular Medicine, 2023, 33, 92-106.	4.9	9
4	Prognostic value of post-procedural \hat{l} 4QFR for drug-coated balloons in the treatment of in-stent restenosis. Cardiology Journal, 2023, 30, 167-177.	1.2	7
5	Convolutional networks for the segmentation of intravascular ultrasound images: Evaluation on a multicenter dataset. Computer Methods and Programs in Biomedicine, 2022, 215, 106599.	4.7	17
6	Post-PCI outcomes predicted by pre-intervention simulation of residual quantitative flow ratio using augmented reality. International Journal of Cardiology, 2022, 352, 33-39.	1.7	15
7	Functional Assessment of Cerebral Artery Stenosis by Angiography-Based Quantitative Flow Ratio: A Pilot Study. Frontiers in Aging Neuroscience, 2022, 14, 813648.	3.4	4
8	The role of superficial wall stress and mechanical factors in scaffold failure: Protocol of the RANSOMED study. Cardiology Journal, 2022, , .	1.2	2
9	Reproducibility of quantitative flow ratio: the QREP study. EuroIntervention, 2022, 17, 1252-1259.	3.2	19
10	Microvascular and Prognostic Effect in Lesions With Different Stent Expansion During Primary PCI for STEMI: Insights From Coronary Physiology and Intravascular Ultrasound. Frontiers in Cardiovascular Medicine, 2022, 9, 816387.	2.4	1
11	Impact of coronary plaque morphology on the precision of computational fractional flow reserve derived from optical coherence tomography imaging. Cardiovascular Diagnosis and Therapy, 2022, 12, 155-165.	1.7	7
12	Physiologic and compositional coronary artery disease extension in patients with takotsubo syndrome assessed using artificial intelligence: an optical coherence tomography study. Coronary Artery Disease, 2022, Publish Ahead of Print, .	0.7	1
13	A novel angiography-based computational modelling for assessing the dynamic stress and quantitative fatigue fracture risk of the coronary stents immediately after implantation: Effects of stent materials, designs and target vessel motions. Medicine in Novel Technology and Devices, 2022, 14, 100121.	1.6	1
14	Agreement between Murray law-based quantitative flow ratio (νQFR) and three-dimensional quantitative flow ratio (3D-QFR) in non-selected angiographic stenosis: A multicenter study. Cardiology Journal, 2022, 29, 388-395.	1,2	7
15	Functional comparison of different jailed balloon techniques in treating non-left main coronary bifurcation lesions. International Journal of Cardiology, 2022, 364, 20-26.	1.7	2
16	Risk Stratification in Acute Coronary Syndrome by Comprehensive Morphofunctional Assessment With Optical Coherence Tomography. JACC Asia, 2022, 2, 460-472.	1.5	9
17	Diagnostic accuracy of CCTA-derived versus angiography-derived quantitative flow ratio (CAREER) study: a prospective study protocol. BMJ Open, 2022, 12, e055481.	1.9	O
18	Comparison of coronary CT angiography-based and invasive coronary angiography-based quantitative flow ratio for functional assessment of coronary stenosis: A multicenter retrospective analysis. Journal of Cardiovascular Computed Tomography, 2022, 16, 509-516.	1.3	4

#	Article	IF	CITATIONS
19	Modelâ€based analysis of the sensitivities and diagnostic implications of FFR and CFR under various pathological conditions. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3257.	2.1	20
20	Resting distal to aortic pressure ratio and fractional flow reserve discordance affects the diagnostic performance of quantitative flow ratio: Results from an individual patient data metaâ€analysis. Catheterization and Cardiovascular Interventions, 2021, 97, 825-832.	1.7	1
21	Clinical implication of QFR in patients with ST-segment elevation myocardial infarction after drug-eluting stent implantation. International Journal of Cardiovascular Imaging, 2021, 37, 755-766.	1.5	17
22	Accuracy of Intravascular Ultrasound-Based Fractional Flow Reserve in Identifying Hemodynamic Significance of Coronary Stenosis. Circulation: Cardiovascular Interventions, 2021, 14, e009840.	3.9	41
23	Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law. Catheterization and Cardiovascular Interventions, 2021, 97, 1040-1047.	1.7	94
24	Immediate post-procedural functional assessment of percutaneous coronary intervention: current evidence and future directions. European Heart Journal, 2021, 42, 2695-2707.	2.2	34
25	Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques. EuroIntervention, 2021, 17, 41-50.	3.2	55
26	Angiography-Based 4-Dimensional Superficial Wall Strain and Stress: A New Diagnostic Tool in the Catheterization Laboratory. Frontiers in Cardiovascular Medicine, 2021, 8, 667310.	2.4	5
27	Identification of the type of stent with three-dimensional optical coherence tomography: the SPQR study. EuroIntervention, 2021, 17, e140-e148.	3.2	3
28	Quantitative flow ratio-guided residual functional SYNTAX score for risk assessment in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention. EuroIntervention, 2021, 17, e287-e293.	3.2	10
29	Usefulness of optical coherence tomography with angiographic coregistration in the guidance of coronary stent implantation. Heart and Vessels, 2021, , 1.	1.2	4
30	One-step anatomic and function testing by cardiac CT versus second-line functional testing in symptomatic patients with coronary artery stenosis: head-to-head comparison of CT-derived fractional flow reserve and myocardial perfusion imaging. EuroIntervention, 2021, 17, 576-583.	3.2	7
31	Automatic Coregistration Between Coronary Angiography and Intravascular Optical Coherence Tomography. JACC Asia, 2021, 1, 274-278.	1.5	4
32	Comparison of Clinically Adjudicated Versus Flow-Based Adjudication of Revascularization Events in Randomized Controlled Trials. Circulation: Cardiovascular Quality and Outcomes, 2021, 14, e008055.	2.2	4
33	Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. Lancet, The, 2021, 398, 2149-2159.	13.7	175
34	Optical Coherence Tomography-Derived Changes in Plaque Structural Stress Over the Cardiac Cycle: A New Method for Plaque Biomechanical Assessment. Frontiers in Cardiovascular Medicine, 2021, 8, 715995.	2.4	8
35	Examinee-Examiner Network: Weakly Supervised Accurate Coronary Lumen Segmentation Using Centerline Constraint. IEEE Transactions on Image Processing, 2021, 30, 9429-9441.	9.8	6
36	Combined Use of Multiple Intravascular Imaging Techniques in Acute Coronary Syndrome. Frontiers in Cardiovascular Medicine, 2021, 8, 824128.	2.4	5

3

#	Article	IF	CITATIONS
37	Optical flow ratio for assessing stenting result and physiological significance of residual disease. EuroIntervention, 2021, 17, e989-e998.	3.2	22
38	Effects of local hemodynamics and plaque characteristics on neointimal response following bioresorbable scaffolds implantation in coronary bifurcations. International Journal of Cardiovascular Imaging, 2020, 36, 241-249.	1.5	2
39	Diagnostic Accuracy of a Fast Computational Approach to Derive Fractional Flow Reserve From CoronaryÂCT Angiography. JACC: Cardiovascular Imaging, 2020, 13, 172-175.	5.3	18
40	Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation. European Heart Journal, 2020, 41, 3271-3279.	2.2	69
41	Comparison of quantitative flow ratio and fractional flow reserve with myocardial perfusion scintigraphy and cardiovascular magnetic resonance as reference standard. A Dan-NICAD substudy. International Journal of Cardiovascular Imaging, 2020, 36, 395-402.	1.5	10
42	The Impact of Coronary Physiology on Contemporary Clinical Decision Making. JACC: Cardiovascular Interventions, 2020, 13, 1617-1638.	2.9	60
43	Physiological assessment of non-culprit stenoses during acute coronary syndromes. European Heart Journal, 2020, 41, 2598-2598.	2.2	1
44	Quantitative flow ratio–guided strategy versus angiography-guided strategy for percutaneous coronary intervention: Rationale and design of the FAVOR III China trial. American Heart Journal, 2020, 223, 72-80.	2.7	34
45	Novel Indices of Coronary Physiology. Circulation: Cardiovascular Interventions, 2020, 13, e008487.	3.9	44
46	Comparison of Instantaneous Wave-Free Ratio (iFR) and Fractional Flow Reserve (FFR) with respect to Their Sensitivities to Cardiovascular Factors: A Computational Model-Based Study. Journal of Interventional Cardiology, 2020, 2020, 1-12.	1.2	14
47	Comparison of Optical Flow Ratio and Fractional Flow Ratio in Stent-Treated Arteries Immediately After Percutaneous Coronary Intervention. Circulation Journal, 2020, 84, 2253-2258.	1.6	15
48	Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions. EuroIntervention, 2020, 16, 568-576.	3.2	55
49	Reproducibility of quantitative flow ratio: An inter-core laboratory variability study. Cardiology Journal, 2020, 27, 230-237.	1.2	14
50	Diagnostic accuracy and reproducibility of optical flow ratio for functional evaluation of coronary stenosis in a prospective series. Cardiology Journal, 2020, 27, 350-361.	1.2	36
51	The yin-yang sign in the detection of subintimal hematoma with high-definition intravascular ultrasound. Cardiology Journal, 2020, 27, 81-82.	1.2	2
52	Automatic stent reconstruction in optical coherence tomography based on a deep convolutional model. Biomedical Optics Express, 2020, 11, 3374.	2.9	18
53	Can the Wall Shear Stress Values of Left Internal Mammary Artery Grafts during the Perioperative Period Reflect the One-Year Patency?. Thoracic and Cardiovascular Surgeon, 2020, 68, 723-729.	1.0	4
54	Quantitative flow ratio-guided surgical intervention in symptomatic myocardial bridging. Cardiology Journal, 2020, 27, 685-692.	1.2	0

#	Article	IF	CITATIONS
55	Procedural findings and early healing response after implantation of a self-apposing bioresorbable scaffold in coronary bifurcation lesions. International Journal of Cardiovascular Imaging, 2019, 35, 1199-1210.	1.5	5
56	Simultaneous evaluation of plaque stability and ischemic potential of coronary lesions in a fluid–structure interaction analysis. International Journal of Cardiovascular Imaging, 2019, 35, 1563-1572.	1.5	11
57	Diagnostic performance of quantitative flow ratio in prospectively enrolled patients: An individual patientâ€data metaâ€analysis. Catheterization and Cardiovascular Interventions, 2019, 94, 693-701.	1.7	79
58	Accuracy of 3-dimensional and 2-dimensional quantitative coronary angiography for predicting physiological significance of coronary stenosis: a FAVOR II substudy. Cardiovascular Diagnosis and Therapy, 2019, 9, 481-491.	1.7	7
59	A novel software tool for semi-automatic quantification of thoracic aorta dilatation on baseline and follow-up computed tomography angiography. International Journal of Cardiovascular Imaging, 2019, 35, 711-723.	1.5	17
60	First Presentation of Integration of Intravascular Optical Coherence Tomography and Computational Fractional Flow Reserve. International Journal of Cardiovascular Imaging, 2019, 35, 601-602.	1.5	6
61	Automatic coronary blood flow computation: validation in quantitative flow ratio from coronary angiography. International Journal of Cardiovascular Imaging, 2019, 35, 587-595.	1.5	16
62	Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity. EuroIntervention, 2019, 15, 189-197.	3.2	85
63	A simplified formula to calculate fractional flow reserve in sequential lesions circumventing the measurement of coronary wedge pressure: The APIS-S pilot study. Cardiology Journal, 2019, 26, 310-321.	1.2	3
64	Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve. Atherosclerosis, 2018, 273, 136-144.	0.8	22
65	Local Flow Patterns After Implantation of Bioresorbable Vascular Scaffold in Coronary Bifurcations ― Novel Findings by Computational Fluid Dynamics ―. Circulation Journal, 2018, 82, 1575-1583.	1.6	8
66	Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo. International Journal of Cardiovascular Imaging, 2018, 34, 849-861.	1.5	14
67	Association of stentâ€induced changes in coronary geometry with late stent failure: Insights from threeâ€dimensional quantitative coronary angiographic analysis. Catheterization and Cardiovascular Interventions, 2018, 92, 1040-1048.	1.7	6
68	Evaluation of Coronary Artery Stenosis by Quantitative Flow Ratio During Invasive Coronary Angiography. Circulation: Cardiovascular Imaging, 2018, 11, e007107.	2.6	157
69	Analyses of aerodynamic characteristics of the oropharynx applying CBCT: obstructive sleep apnea patients versus control subjects. Dentomaxillofacial Radiology, 2018, 47, 20170238.	2.7	20
70	In-stent fractional flow reserve variations and related optical coherence tomography findings: the FFR–OCT co-registration study. International Journal of Cardiovascular Imaging, 2018, 34, 495-502.	1.5	6
71	Diagnostic Performance of Inâ€Procedure Angiographyâ€Derived Quantitative Flow Reserve Compared to Pressureâ€Derived Fractional Flow Reserve: The FAVOR II Europeâ€Japan Study. Journal of the American Heart Association, 2018, 7, .	3.7	240
72	Diagnostic performance of angiography-derived fractional flow reserve: a systematic review and Bayesian meta-analysis. European Heart Journal, 2018, 39, 3314-3321.	2.2	116

#	Article	IF	CITATIONS
73	In vivo reconstruction of coronary artery and bioresorbable stents from intracoronary optical coherence tomography. , $2018, \ldots$		О
74	Quantification of aortic annulus in computed tomography angiography: Validation of a fully automatic methodology. European Journal of Radiology, 2017, 93, 1-8.	2.6	12
75	Numerical and experimental investigations of the flow–pressure relation in multiple sequential stenoses coronary artery. International Journal of Cardiovascular Imaging, 2017, 33, 1083-1088.	1.5	15
76	A systematic review of imaging anatomy in predicting functional significance of coronary stenoses determined by fractional flow reserve. International Journal of Cardiovascular Imaging, 2017, 33, 975-990.	1.5	21
77	Diagnostic Accuracy of Angiography-Based Quantitative FlowÂRatio Measurements for Online AssessmentÂof Coronary Stenosis. Journal of the American College of Cardiology, 2017, 70, 3077-3087.	2.8	355
78	Influence of coronary microcirculatory dysfunction on FFR calculation based on computational fluid dynamics. European Heart Journal Cardiovascular Imaging, 2017, 18, 1066-1066.	1.2	1
79	Superficial wall stress assessed from 4-D analysis of coronary angiography in vivo. International Journal of Cardiovascular Imaging, 2017, 33, 1111-1112.	1.5	6
80	Whence we came, whither we go?. International Journal of Cardiovascular Imaging, 2017, 33, 957-959.	1.5	1
81	Assessment of endothelial shear stress in patients with mild or intermediate coronary stenoses using coronary computed tomography angiography: comparison with invasive coronary angiography. International Journal of Cardiovascular Imaging, 2017, 33, 1101-1110.	1.5	8
82	Anatomical and functional assessment of Tryton bifurcation stent before and after final kissing balloon dilatation: Evaluations by three-dimensional coronary angiography, optical coherence tomography imaging and fractional flow reserve. Catheterization and Cardiovascular Interventions, 2017, 90, E1-E10.	1.7	5
83	Quantitative angiography methods for bifurcation lesions: a consensus statement update from the European Bifurcation Club. EuroIntervention, 2017, 13, 115-123.	3.2	35
84	A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture. EuroIntervention, 2017, 13, e1099-e1103.	3.2	14
85	TCT-433 Feasibility, self-correcting properties and one-month results after implantation of a novolimus eluting bioresorbable stent in coronary bifurcations. The BIFSORB pilot study. Journal of the American College of Cardiology, 2016, 68, B174-B175.	2.8	2
86	Diagnostic Accuracy of Fast Computational Approaches to DeriveÂFractional Flow Reserve FromÂDiagnostic Coronary Angiography. JACC: Cardiovascular Interventions, 2016, 9, 2024-2035.	2.9	394
87	Automatic detection of aorto-femoral vessel trajectory from whole-body computed tomography angiography data sets. International Journal of Cardiovascular Imaging, 2016, 32, 1311-1322.	1.5	4
88	Fusion of CTA and XA data using 3D centerline registration for plaque visualization during coronary intervention. , $2016, $, .		1
89	The impact of image resolution on computation of fractional flow reserve: coronary computed tomography angiography versus 3-dimensional quantitative coronary angiography. International Journal of Cardiovascular Imaging, 2016, 32, 513-523.	1.5	14
90	Advances in three-dimensional coronary imaging and computational fluid dynamics. Coronary Artery Disease, 2015, 26, e43-e54.	0.7	10

#	Article	IF	Citations
91	Co-registration of optical coherence tomography and X-ray angiography in percutaneous coronary intervention. The Does Optical Coherence Tomography Optimize Revascularization (DOCTOR) fusion study. International Journal of Cardiology, 2015, 182, 272-278.	1.7	41
92	Impact of Side Branch Modeling on Computation of Endothelial Shear Stress in Coronary Artery Disease. Journal of the American College of Cardiology, 2015, 66, 125-135.	2.8	75
93	Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: Comparative study to 3D IVUS and 3D QCA. Atherosclerosis, 2015, 240, 510-519.	0.8	55
94	Non-culprit coronary lesions in young patients have higher rates of atherosclerotic progression. International Journal of Cardiovascular Imaging, 2015, 31, 889-897.	1.5	6
95	Fractional Flow Reserve and Coronary Bifurcation Anatomy. JACC: Cardiovascular Interventions, 2015, 8, 564-574.	2.9	49
96	Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting. JACC: Cardiovascular Interventions, 2015, 8, 1281-1296.	2.9	84
97	A novel method to assess coronary artery bifurcations by OCT: cut-plane analysis for side-branch ostial assessment from a main-vessel pullback. European Heart Journal Cardiovascular Imaging, 2015, 16, 177-189.	1.2	44
98	Is it safe to implant bioresorbable scaffolds in ostial side-branch lesions? Impact of â€neo-carina†formation on main-branch flow pattern. Longitudinal clinical observations. Atherosclerosis, 2015, 238, 22-25.	0.8	11
99	Reversal of flow between serial bifurcation lesions: insights from computational fluid dynamic analysis in a population-based phantom model. EuroIntervention, 2015, 11, e1-e3.	3.2	13
100	The need for dedicated bifurcation quantitative coronary angiography (QCA) software algorithms to evaluate bifurcation lesions. EuroIntervention, 2015, 11, V44-V49.	3.2	21
101	Image-based assessment of fractional flow reserve. EuroIntervention, 2015, 11, V50-V54.	3.2	23
102	The future of BRS in bifurcations. EuroIntervention, 2015, 11, V188-V192.	3.2	8
103	OCT Assessment of the Long-Term Vascular Healing Response 5 Years AfterÂEverolimus-Eluting BioresorbableÂVascular Scaffold. Journal of the American College of Cardiology, 2014, 64, 2343-2356.	2.8	101
104	Optical Coherence Tomography-Guided Bifurcation Stenting of a Coronary Artery Dissection. Canadian Journal of Cardiology, 2014, 30, 956.e11-956.e14.	1.7	3
105	ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. International Journal of Cardiovascular Imaging, 2014, 30, 253-261.	1.5	37
106	Development of 3D IVOCT Imaging and Co-Registration of IVOCT and Angiography in the Catheterization Laboratory. Current Cardiovascular Imaging Reports, 2014, 7, 1.	0.6	4
107	Fractional Flow Reserve Calculation From 3-Dimensional Quantitative Coronary AngiographyÂand TIMI Frame Count. JACC: Cardiovascular Interventions, 2014, 7, 768-777.	2.9	292
108	THE FUSION OF THREE-DIMENSIONAL QUANTITATIVE CORONARY ANGIOGRAPHY AND INTRACORONARY IMAGING FOR CORONARY INTERVENTIONS. Series in Computer Vision, 2014, , 151-173.	0.1	0

#	Article	IF	CITATIONS
109	Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenoses: Comparison with fractional flow reserve. American Heart Journal, 2013, 166, 1010-1018.e1.	2.7	39
110	Acquired peri-stent evaginations in a second generation durable polymer drug eluting stent. Cardiovascular Revascularization Medicine, 2013, 14, 246-247.	0.8	3
111	Optimization of Tryton Dedicated Coronary Bifurcation System With Coregistration of Optical Coherence Tomography and Fractional Flow Reserve. JACC: Cardiovascular Interventions, 2013, 6, e39-e40.	2.9	5
112	Coronary Edema Demonstrated by Cardiovascular Magnetic Resonance in Patients With Peri-Stent Inflammation and Aneurysm Formation After Treatment by Drug-Eluting Stents. Circulation: Cardiovascular Imaging, 2013, 6, 352-354.	2.6	5
113	In Vivo Flow Simulation at Coronary Bifurcation Reconstructed by Fusion of 3-Dimensional X-ray Angiography and Optical Coherence Tomography. Circulation: Cardiovascular Interventions, 2013, 6, e15-7.	3.9	25
114	Co-registration of fractional flow reserve and optical coherence tomography with the use of a three-dimensional angiographic roadmap: an opportunity for optimisation of complex percutaneous coronary interventions. EuroIntervention, 2013, 9, 889-889.	3.2	6
115	In vivo assessment of bifurcation optimal viewing angles and bifurcation angles by three-dimensional (3D) quantitative coronary angiography. International Journal of Cardiovascular Imaging, 2012, 28, 1617-1625.	1.5	54
116	Online 3-Dimensional Rendering of Optical Coherence Tomography Images for the Assessment of Bifurcation Intervention. Canadian Journal of Cardiology, 2012, 28, 759.e1-759.e3.	1.7	6
117	First Presentation of 3-Dimensional Reconstruction and Centerline-Guided Assessment of Coronary Bifurcation by Fusion of X-Ray Angiography and Optical Coherence Tomography. JACC: Cardiovascular Interventions, 2012, 5, 884-885.	2.9	13
118	In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography. International Journal of Cardiovascular Imaging, 2012, 28, 1315-1327.	1.5	97
119	Carina shift as a mechanism for side-branch compromise following main vessel intervention: insights from three-dimensional optical coherence tomography. Cardiovascular Diagnosis and Therapy, 2012, 2, 173-7.	1.7	5
120	Diagnostic Optimization of Coronary CT AngiographyâžâžEditorials published in JACC: Cardiovascular Imaging reflect the views of the authors and do not necessarily represent the views of JACC: Cardiovascular Imaging or the American College of Cardiology JACC: Cardiovascular Imaging, 2011, 4, 1158-1160.	5.3	0
121	Fusion of 3D QCA and IVUS/OCT. International Journal of Cardiovascular Imaging, 2011, 27, 197-207.	1.5	66
122	The impact of acquisition angle differences on threeâ€dimensional quantitative coronary angiography. Catheterization and Cardiovascular Interventions, 2011, 78, 214-222.	1.7	20
123	QCA, IVUS and OCT in interventional cardiology in 2011. Cardiovascular Diagnosis and Therapy, 2011, 1, 57-70.	1.7	19
124	In vivo assessment of optimal viewing angles from X-ray coronary angiography. EuroIntervention, 2011, 7, 112-120.	3.2	17
125	Use of three-dimensional optical coherence tomography to verify correct wire position in a jailed side branch after main vessel stent implantation. EuroIntervention, 2011, 7, 528-529.	3.2	9
126	Assessment of obstruction length and optimal viewing angle from biplane X-ray angiograms. International Journal of Cardiovascular Imaging, 2010, 26, 5-17.	1.5	37

SHENGXIAN TU

#	ARTICLE	IF	CITATIONS
127	A novel three $\hat{a} \in d$ imensional quantitative coronary angiography system: In $\hat{a} \in v$ ivo comparison with intravascular ultrasound for assessing arterial segment length. Catheterization and Cardiovascular Interventions, 2010, 76, 291-298.	1.7	42
128	Coronary angiography enhancement for visualization. International Journal of Cardiovascular Imaging, 2009, 25, 657-667.	1.5	10
129	Automatic tracing and segmentation of rat mammary fat pads in MRI image sequences based on cartoon-texture model. Transactions of Tianjin University, 2009, 15, 229-235.	6.4	5
130	Stick-guided lateral inhibition for enhancement of low-contrast image. , 2007, , .		1
131	Mutual Information-Based Multimodal Non-Rigid Image Registration Using Free-Form Deformation with A New Joint Histogram Estimation. , 2007, , .		1
132	Automatic Segmentation of Rat Mammary Glands from Serial MRI Images., 2007,,.		0
133	Overview of Quantitative Flow Ratio and Optical Flow Ratio in the Assessment of Intermediate Coronary Lesions. US Cardiology Review, 0, 14, .	0.5	5