Caleb D Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2241643/publications.pdf

Version: 2024-02-01

54 papers

2,676 citations

218381 26 h-index 51 g-index

59 all docs

59 docs citations

59 times ranked

1580 citing authors

#	Article	IF	CITATIONS
1	³¹ Pâ€NMR Chemical Shifts of Carbene–Phosphinidene Adducts as an Indicator of the Ï€â€Accepting Properties of Carbenes. Angewandte Chemie - International Edition, 2013, 52, 2939-2943.	7.2	447
2	Carbene-stabilized main group radicals and radical ions. Chemical Science, 2013, 4, 3020.	3.7	433
3	Ring expansion reactions of anti-aromatic boroles: a promising synthetic avenue to unsaturated boracycles. Chemical Communications, 2016, 52, 9985-9991.	2.2	94
4	Exploring the reactivity of white phosphorus with electrophilic carbenes: synthesis of a P4 cage and P8 clusters. Chemical Communications, 2013, 49, 4486.	2.2	89
5	Investigating the ring expansion reaction of pentaphenylborole and an azide. Chemical Communications, 2014, 50, 11724-11726.	2.2	88
6	9-Borafluorenes: Synthesis, Properties, and Reactivity. Chemical Reviews, 2021, 121, 4147-4192.	23.0	72
7	Ring Expansion Reactions of Pentaphenylborole with Dipolar Molecules as a Route to Seven-Membered Boron Heterocycles. Inorganic Chemistry, 2015, 54, 1869-1875.	1.9	65
8	1,2â€Phosphaborines: Hybrid Inorganic/Organic P–B Analogues of Benzene. Angewandte Chemie - International Edition, 2015, 54, 12083-12086.	7.2	64
9	Intermolecular insertion reactions of azides into 9-borafluorenes to generate 9,10-B,N-phenanthrenes. Chemical Communications, 2018, 54, 6808-6811.	2.2	64
10	Iron(II)-Catalyzed Azidotrifluoromethylation of Olefins and N-Heterocycles for Expedient Vicinal Trifluoromethyl Amine Synthesis. ACS Catalysis, 2018, 8, 5032-5037.	5 . 5	58
11	Oxygen insertion into boroles as a route to 1,2-oxaborines. Chemical Communications, 2016, 52, 6658-6661.	2.2	53
12	Reactions of Imines, Nitriles, and Isocyanides with Pentaphenylborole: Coordination, Ring Expansion, C–H Bond Activation, and Hydrogen Migration Reactions. Inorganic Chemistry, 2015, 54, 8957-8968.	1.9	50
13	Remarkably Stable Chalcogen(II) Dications. Journal of the American Chemical Society, 2009, 131, 15126-15127.	6.6	46
14	Synthesis of 9-borafluorene analogues featuring a three-dimensional 1,1′-bis(⟨i⟩o⟨/i⟩-carborane) backbone. Chemical Communications, 2019, 55, 2892-2895.	2.2	44
15	Dicationic Sulfur Analogues of Nâ€Heterocyclic Silylenes and Phosphenium Cations. Angewandte Chemie - International Edition, 2009, 48, 2210-2213.	7.2	42
16	Reactivity of a Phosphaalkyne with Pentaarylboroles. Organometallics, 2016, 35, 929-931.	1.1	41
17	Peculiar Reactivity of Isothiocyanates with Pentaphenylborole. Inorganic Chemistry, 2016, 55, 330-337.	1.9	40
18	Coordination and Ring Expansion of 1,2-Dipolar Molecules with 9-Phenyl-9-borafluorene. Organometallics, 2018, 37, 2917-2927.	1.1	38

#	Article	IF	CITATIONS
19	Crossâ€Coupling Reactions between Stable Carbenes. Angewandte Chemie - International Edition, 2014, 53, 6550-6553.	7.2	36
20	Expedient Synthesis of 1,2â€Thiaborines by Means of Sulfur Insertion into Boroles. Chemistry - A European Journal, 2016, 22, 18358-18361.	1.7	34
21	Boraphosphaalkene Synthesis via Phosphaalkyne Insertion into 9-Borafluorene. Organometallics, 2018, 37, 1515-1518.	1.1	33
22	An International Study Evaluating Elemental Analysis. ACS Central Science, 2022, 8, 855-863.	5. 3	33
23	Synthesis of N,C Bound Sulfur, Selenium, and Tellurium Heterocycles via the Reaction of Chalcogen Halides with â°CH ₃ Substituted Diazabutadiene Ligands. Inorganic Chemistry, 2009, 48, 3239-3247.	1.9	31
24	Isomer Dependence on the Reactivity of Diazenes with Pentaphenylborole. Chemistry - A European Journal, 2017, 23, 11437-11444.	1.7	31
25	The 9â€Borataphenanthrene Anion. Angewandte Chemie - International Edition, 2020, 59, 11470-11476.	7.2	30
26	Substitution matters: isolating phosphorus diiminopyridine complexes. Dalton Transactions, 2011, 40, 11976.	1.6	29
27	Dimeric boroles: effective sources of monomeric boroles for heterocycle synthesis. Chemical Science, 2020, 11, 126-131.	3.7	29
28	Probing the reactivity of pentaphenylborole with N–H, O–H, P–H, and S–H bonds. Dalton Transactions, 2016, 45, 9902-9911.	1.6	28
29	Successive carbene insertion into 9-phenyl-9-borafluorene. Dalton Transactions, 2019, 48, 6319-6322.	1.6	22
30	Diverse Reactivity of Dienes with Pentaphenylborole and 1â€Phenylâ€2,3,4,5â€Tetramethylborole Dimer. Chemistry - A European Journal, 2019, 25, 1581-1587.	1.7	22
31	A new approach to internal Lewis pairs featuring a phosphenium acid and a pyridine base. Dalton Transactions, 2010, 39, 11069.	1.6	21
32	Reactions of pentaphenylborole with main group hydrides. Polyhedron, 2016, 114, 273-277.	1.0	21
33	The Syntheses and Electrochemical Studies of a Ferrocene Substituted Diiminopyridine Ligand and Its P, S, Se, and Te Complexes. Inorganic Chemistry, 2012, 51, 8425-8432.	1.9	20
34	Reactions of Diiminopyridine Ligands with Chalcogen Halides. Inorganic Chemistry, 2012, 51, 2947-2953.	1.9	20
35	Reactions of α-Diimine Ligands with the in Situ Generated "S(OTf) ₂ ―Synthon. Inorganic Chemistry, 2010, 49, 4324-4330.	1.9	19
36	Ring Opening of Epoxides Induced by Pentaphenylborole. Organometallics, 2017, 36, 2581-2587.	1.1	19

#	Article	IF	Citations
37	Evaluation of the $\dagger f$ -Donating and $\dagger \epsilon$ -Accepting Properties of N-Heterocyclic Boryl Anions. Inorganic Chemistry, 2019, 58, 16500-16509.	1.9	18
38	Exploiting Pincer Ligands to Perturb the Geometry at Boron. Chemistry - A European Journal, 2017, 23, 10532-10535.	1.7	17
39	Preferred Bonding Motif for Indium Aminoethanethiolate Complexes:  Structural Characterization of (Me2NCH2CH2S)2InX/SR (X = Cl, I; R = 4-MeC6H4, 4-MeOC6H4). Inorganic Chemistry, 2006, 45, 8423-8429.	1.9	16
40	Investigating the reactivity of 9-phenyl-9-borafluorene with N H, O H, P H, and S H bonds. Tetrahedron, 2019, 75, 937-943.	1.0	16
41	Synthesis and Reactivity of Sulfur(II) Dications Stabilized Using Monodentate Ligands. Inorganic Chemistry, 2010, 49, 8164-8172.	1.9	15
42	C–H addition reactivity of 2-phenylpyridine and 2,2′-bipyridine with pentaphenylborole. Dalton Transactions, 2017, 46, 10324-10331.	1.6	14
43	Aromaticity of unsaturated BEC ₄ heterocycles (E = N, P, As, Sb, O, S, Se, Te). Physical Chemistry Chemical Physics, 2019, 21, 18458-18466.	1.3	10
44	The 9â€Borataphenanthrene Anion. Angewandte Chemie, 2020, 132, 11567-11573.	1.6	10
45	Oxygen, sulfur, selenium, tellurium and polonium. Annual Reports on the Progress of Chemistry Section A, 2011, 107, 110.	0.8	8
46	Borataalkene Hydrofunctionalization Reactions. Organometallics, 2021, 40, 1966-1973.	1.1	6
47	Accessing Boron-Doped Pentaphene Analogues from 12-Boradibenzofluorene. Inorganic Chemistry, 2022, 61, 9595-9604.	1.9	6
48	Antimony diiminopyridine complexes. Dalton Transactions, 2021, 50, 11716-11719.	1.6	4
49	Ligation of Boratabenzene and 9-Borataphenanthrene to Coinage Metals. Inorganic Chemistry, 2021, 60, 18981-18989.	1.9	4
50	Reactions of BCl ₃ with Diiminopyridine Ligands. European Journal of Inorganic Chemistry, 2020, 2020, 2955-2957.	1.0	3
51	Nickel–Borolide Complexes and Their Complex Electronic Structure. Inorganic Chemistry, 2021, 60, 16160-16167.	1.9	3
52	Investigating the Reactions of BiCl $<$ sub $>$ 3 $<$ /sub $>$, a Diiminopyridine Ligand, and Trimethylsilyl Trifluoromethanesulfonate. Organometallics, 2022, 41, 1197-1203.	1.1	2
53	Bis($\hat{l}\frac{1}{4}$ -diethylphosphido- \hat{l}° ² <i>P</i>)P)bis[bis(2,4,6-trimethylphenyl)indium(III)]. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1578-m1578.	0.2	1
54	Li deposited on LiCl: an efficient reducing agent. New Journal of Chemistry, 2021, 45, 14913-14915.	1.4	1