
$\tilde{D}_{\tilde{N}} \tilde{D}_{\tilde{N}} \tilde{N}_{\tilde{N}} \tilde{N}_{\tilde{N}} \tilde{D}_{\tilde{N}} \tilde{N}_{\tilde{N}} \tilde{D}_{\tilde{N}} \tilde{D}$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2241468/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effect of the Mechanical Activation of Silicate Nature Fillers on the Properties of Styrene—Acrylic Polymer Coatings. Polymer Science - Series D, 2019, 12, 227-230.	0.6	2
2	Modification of Polyvinyl Chloride Compositions by Polymerizable Epoxyallyl Oligomers. Polymer Science - Series D, 2019, 12, 121-123.	0.6	1
3	Modification of Poly(Vinyl Chloride) Compositions with Cyclocarbonate Derivatives of Epoxy Resins. Polymer Science - Series D, 2019, 12, 20-23.	0.6	2
4	Optical Adhesives: Analysis, Achievements, and Trends in Development. Polymer Science - Series D, 2019, 12, 410-416.	0.6	3
5	Polymer–Polymer Modification when Obtaining Epoxy/Allyl Polymers with a Shape-Memory Effect. Polymer Science - Series D, 2018, 11, 11-19.	0.6	0
6	Metabolic Activity of Micromycetes Affecting Urban Concrete Constructions. Scientific World Journal, The, 2018, 2018, 1-9.	2.1	12
7	Functional Modification Effect of Epoxy Oligomers on the Structure and Properties of Epoxy Hydroxyurethane Polymers. Advances in Materials Science and Engineering, 2018, 2018, 1-16.	1.8	4
8	The effect of activated fillers on the properties of styrene–acrylic adhesives. Polymer Science - Series D, 2017, 10, 50-54.	0.6	2
9	Oligomer–oligomer modification upon the synthesis of epoxy polymers with a "shape-memory―effect. Polymer Science - Series D, 2017, 10, 207-212.	0.6	0
10	Modification of epoxy-amine compositions on the basis of water-soluble resin. Polymer Science - Series D, 2017, 10, 213-216.	0.6	1
11	Adhesion of protective coatings with modified filler. Polymer Science - Series D, 2016, 9, 83-86.	0.6	2
12	Chemical modification of the structure and properties of epoxy polymers in the application of chloraniline hardeners. Polymer Science - Series D, 2016, 9, 141-144.	0.6	1
13	Studies of the resistance of adamantane-containing epoxy polymers to thermal, chemical, and biological aging. Polymer Science - Series D, 2015, 8, 122-129.	0.6	0
14	Water-soluble hydantoin-containing epoxy resins and polymers based on them. Polymer Science - Series D, 2015, 8, 257-260.	0.6	4
15	Modification of epoxy compositions of adamantane-containing aminoadducts based on diamineadamantanes. Polymer Science - Series D, 2015, 8, 42-48.	0.6	2
16	Modification of epoxy compositions by adducts based on functional derivatives of adamantanol and adamantanecarboxylic acid. Polymer Science - Series D, 2015, 8, 49-53.	0.6	1
17	An investigation of the interconnection between topological characteristics of physical and chemical networks of anhydride adamantane-containing epoxy polymers. Polymer Science - Series D, 2014, 7, 261-264.	0.6	0
18	An investigation of the effect of adamantanecarboxylic acids on the structure of epoxy polymers by means of X-ray structural and thermomechanical analyses. Polymer Science - Series D, 2014, 7, 265-270.	0.6	0

#	Article	IF	CITATIONS
19	Problems of adhesion strength in epoxy-allylic polymer-polymer systems. Polymer Science - Series D, 2014, 7, 19-22.	0.6	1
20	Peculiarities of structure formation of epoxy-amine polymers upon curing of diglycidyl ester of diphenylolpropane with adamantane diamines. Polymer Science - Series D, 2014, 7, 149-153.	0.6	5
21	Investigation of the effect of active diluents on the molecular mobility and topology of cross-linked amine epoxy-adamantane polymers. Polymer Science - Series D, 2014, 7, 154-158.	0.6	2
22	Adhesive technologies in repairing polyethylene pipelines. Polymer Science - Series D, 2014, 7, 191-195.	0.6	1
23	Epoxy-amine polymers obtained upon curing with adamantane diamines. Polymer Science - Series D, 2014, 7, 73-76.	0.6	4
24	Kinetics of curing of epoxy oligomers with adamantane diamines. Polymer Science - Series D, 2014, 7, 77-80.	0.6	4
25	Epoxy polymers based on functional adamantane derivatives. Polymer Science - Series D, 2014, 7, 69-72.	0.6	3
26	Epoxy-foam adhesives. Polymer Science - Series D, 2013, 6, 275-279.	0.6	3
27	A study of the effect of molecular weight epoxy and allylic oligomers on the molecular mobility and properties of epoxy-allylic polymers. Polymer Science - Series D, 2012, 5, 235-237.	0.6	2
28	A study of molecular mobility and relaxation properties of epoxy-allyl interpenetrating polymer networks with a high degree of interpenetration. Polymer Science - Series D, 2012, 5, 238-243.	0.6	2
29	A study of molecular mobility and relaxation properties of epoxy-allyl polymers during formation of interpenetrating polymer networks under conditions of the phase separation of the networks. Polymer Science - Series D, 2012, 5, 244-248.	0.6	3
30	Determination of the parameters of relaxation processes in epoxy-allyl interpenetrating polymer networks with a high degree of interpenetration. Polymer Science - Series D, 2012, 5, 249-252.	0.6	1
31	Epoxyallyl polymers: Preparation, structure, and properties. Polymer Science - Series D, 2012, 5, 125-128.	0.6	4
32	Study of the processes of epoxyallyl polymer formation of IPN type upon curing of oligomer-oligomer mixtures. Polymer Science - Series D, 2012, 5, 129-132.	0.6	3
33	Dependence of physicomechanical strength and peculiar features of deformation of fiberglass, organic, and carbon-fiber epoxy-polymer composite materials on winding conditions. Polymer Science - Series D, 2011, 4, 177-182.	0.6	0
34	Filled epoxy polymer couplings with "shape memory―effect. Polymer Science - Series D, 2011, 4, 183-187.	0.6	0
35	Mathematical models of behavior of polymer material with shape memory. Polymer Science - Series D, 2011, 4, 334-338.	0.6	2
36	Biodeterioration of polymers and polymer composite materials. Polymer Science - Series D, 2009, 2, 164-166.	0.6	4

Ð'Ð,кÑ,оÑ€ ÐiÑ,роÐÐ

#	Article	IF	CITATIONS
37	Comparative analysis of methods for investigating polymer biocorrosion processes. Polymer Science - Series D, 2009, 2, 167-169.	0.6	0
38	Influence of water and aqueous carboxylic acids on properties of epoxide polymer materials. Polymer Science - Series D, 2009, 2, 204-208.	0.6	0
39	Advantages of modification of epoxy adhesives and compounds. Polymer Science - Series C, 2007, 49, 42-45.	1.7	0
40	Peculiarities of structurization and properties of nonisocyanate epoxyurethane polymers. Polymer Science - Series C, 2007, 49, 258-263.	1.7	5
41	Epoxy polymers in adhesive technologies of pipeline joint. Polymer Science - Series C, 2007, 49, 269-271.	1.7	2
42	Optical Adhesives Based on Phosphorus-containing Epoxy Polymers. Russian Journal of Applied Chemistry, 2001, 74, 1364-1367.	0.5	6
43	Study of the relaxational properties of network polymers based on epoxycyclocarbonate composites with an amine curing agent. Polymer Science USSR, 1989, 31, 1520-1524.	0.2	0
44	A study of crosslinking in epoxide-amine systems by pulsed NMR spectroscopy. Polymer Science USSR, 1987, 29, 2182-2188.	0.2	0
45	Studies of hydrogen bonds in model urethan compounds obtained by the "cyclocarbonate-amine" reaction. Journal of Applied Spectroscopy, 1986, 45, 737-741.	0.7	7