
Bryce Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/224145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Applied Physics Letters, 2005, 86, 013505.	1.5	628
2	Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511-512, 654-662.	0.8	542
3	Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Solar Energy Materials and Solar Cells, 2006, 90, 1189-1207.	3.0	534
4	Luminescent layers for enhanced silicon solar cell performance: Up-conversion. Solar Energy Materials and Solar Cells, 2007, 91, 829-842.	3.0	496
5	Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review. Solar Energy Materials and Solar Cells, 2009, 93, 1182-1194.	3.0	480
6	Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Solar Energy Materials and Solar Cells, 2006, 90, 2329-2337.	3.0	470
7	Record Open ircuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure. Advanced Energy Materials, 2019, 9, 1803699.	10.2	325
8	Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Solar Energy Materials and Solar Cells, 2006, 90, 3327-3338.	3.0	271
9	Advanced Material Concepts for Luminescent Solar Concentrators. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1312-1322.	1.9	254
10	The Importance of Dehydration in Determining Ion Transport in Narrow Pores. Small, 2012, 8, 1701-1709.	5.2	220
11	Single-material TiO2 double-layer antireflection coatings. Solar Energy Materials and Solar Cells, 2003, 79, 369-390.	3.0	207
12	Europium complexes with high total photoluminescence quantum yields in solution and in PMMA. Chemical Communications, 2009, , 6649.	2.2	200
13	Photon Upconversion for Photovoltaics and Photocatalysis: AÂCriticalÂReview. Chemical Reviews, 2021, 121, 9165-9195.	23.0	190
14	Highly Efficient IR to NIR Upconversion in Gd ₂ O ₂ S: Er ³⁺ for Photovoltaic Applications. Chemistry of Materials, 2013, 25, 1912-1921.	3.2	183
15	Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review. Progress in Photovoltaics: Research and Applications, 2004, 12, 253-281.	4.4	176
16	Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1834-1839.	2.5	156
17	Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators. Applied Optics, 2009, 48, 212.	2.1	154
18	Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31, e1806702.	11.1	146

#	Article	IF	CITATIONS
19	Inkjetâ€Printed Micrometerâ€Thick Perovskite Solar Cells with Large Columnar Grains. Advanced Energy Materials, 2020, 10, 1903184.	10.2	142
20	Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent downâ€shifting layer. Progress in Photovoltaics: Research and Applications, 2009, 17, 191-197.	4.4	130
21	Wide-range non-contact fluorescence intensity ratio thermometer based on Yb ³⁺ /Nd ³⁺ co-doped La ₂ O ₃ microcrystals operating from 290 to 1230 K. Journal of Materials Chemistry C, 2018, 6, 4163-4170.	2.7	127
22	Enhancing the Near-Infrared Spectral Response of Silicon Optoelectronic Devices via Up-Conversion. IEEE Transactions on Electron Devices, 2007, 54, 2679-2684.	1.6	126
23	Photon Upconversion at Crystalline Organic–Organic Heterojunctions. Advanced Materials, 2016, 28, 8477-8482.	11.1	125
24	Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource Technology, 2012, 125, 75-81.	4.8	123
25	2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Fourâ€Terminal Tandems with Silicon and CIGS. Advanced Functional Materials, 2020, 30, 1909919.	7.8	123
26	Electronâ€Beamâ€Evaporated Nickel Oxide Hole Transport Layers for Perovskiteâ€Based Photovoltaics. Advanced Energy Materials, 2019, 9, 1802995.	10.2	122
27	Improvement in multiâ€crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer. Progress in Photovoltaics: Research and Applications, 2011, 19, 345-351.	4.4	120
28	Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis. Journal of Membrane Science, 2011, 369, 188-195.	4.1	113
29	Characterization and reduction of reabsorption losses in luminescent solar concentrators. Applied Optics, 2010, 49, 1651.	2.1	112
30	Facile synthesis of mono-disperse sub-20 nm NaY(WO ₄) ₂ :Er ³⁺ ,Yb ³⁺ upconversion nanoparticles: a new choice for nanothermometry. Journal of Materials Chemistry C, 2019, 7, 2971-2977.	2.7	112
31	High Efficiency Perovskiteâ€Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.	10.2	110
32	Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nature Communications, 2019, 10, 988.	5.8	107
33	Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System. Environmental Science & Technology, 2007, 41, 998-1003.	4.6	106
34	Structure–Property Relationships in Lanthanideâ€Doped Upconverting Nanocrystals: Recent Advances in Understanding Core–Shell Structures. Advanced Materials, 2019, 31, e1900623.	11.1	102
35	Experimental Energy Barriers to Anions Transporting through Nanofiltration Membranes. Environmental Science & Technology, 2013, 47, 1968-1976.	4.6	100
36	Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations. Progress in Photovoltaics: Research and Applications, 2007, 15, 27-34.	4.4	92

#	Article	IF	CITATIONS
37	Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16390-16399.	4.0	89
38	Flexible Inkjet-Printed Triple Cation Perovskite X-ray Detectors. ACS Applied Materials & Interfaces, 2020, 12, 15774-15784.	4.0	86
39	Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices. Journal of Applied Physics, 2013, 114, .	1.1	85
40	Measured surface loss from luminescent solar concentrator waveguides. Applied Optics, 2008, 47, 6763.	2.1	84
41	Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 3159-3170.	2.1	81
42	Renewable Energy Powered Membrane Technology. 2. The Effect of Energy Fluctuations on Performance of a Photovoltaic Hybrid Membrane System. Environmental Science & Technology, 2008, 42, 4563-4569.	4.6	80
43	Luminescent downâ€shifting experiment and modelling with multiple photovoltaic technologies. Progress in Photovoltaics: Research and Applications, 2015, 23, 479-497.	4.4	79
44	Ultra-high photoluminescent quantum yield of β-NaYF_4: 10% Er^3+ via broadband excitation of upconversion for photovoltaic devices. Optics Express, 2012, 20, A879.	1.7	76
45	Theoretical comparison of cylindrical and square-planar luminescent solar concentrators. Applied Physics B: Lasers and Optics, 2007, 88, 285-290.	1.1	74
46	Perovskite Solar Cells with Allâ€Inkjetâ€Printed Absorber and Charge Transport Layers. Advanced Materials Technologies, 2021, 6, 2000271.	3.0	72
47	Spectral Dependence of Degradation under Ultraviolet Light in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21985-21990.	4.0	71
48	Upâ€Conversion Fluorescent Labels for Plastic Recycling: A Review. Advanced Sustainable Systems, 2017, 1, 1600033.	2.7	70
49	Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV. Solar Energy Materials and Solar Cells, 2014, 122, 99-106.	3.0	68
50	Photocatalytic degradation of organic dye via atomic layer deposited TiO2 on ceramic membranes in single-pass flow-through operation. Journal of Membrane Science, 2020, 604, 118015.	4.1	68
51	The role of polymers in the luminescence conversion of sunlight for enhanced solar cell performance. Synthetic Metals, 2005, 154, 61-64.	2.1	67
52	Direct Evidence of Significant Cation Intermixing in Upconverting Core@Shell Nanocrystals: Toward a New Crystallochemical Model. Chemistry of Materials, 2017, 29, 9238-9246.	3.2	66
53	Absolute upconversion quantum yields of blue-emitting LiYF ₄ :Yb ³⁺ ,Tm ³⁺ upconverting nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 22556-22562.	1.3	66
54	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	11.7	66

#	Article	IF	CITATIONS
55	Enhancing the surface passivation of TiO2 coated silicon wafers. Applied Physics Letters, 2002, 80, 1123-1125.	1.5	65
56	Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries?. Renewable and Sustainable Energy Reviews, 2014, 40, 542-556.	8.2	64
57	Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells. Solar Energy Materials and Solar Cells, 2014, 128, 18-26.	3.0	64
58	Promising fluorescent dye for solar energy conversion based on a perylene perinone. Applied Optics, 2011, 50, 163.	2.1	63
59	Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers. Optics Letters, 2019, 44, 29.	1.7	63
60	Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material. Solar Energy Materials and Solar Cells, 2012, 101, 62-67.	3.0	62
61	Up-conversion quantum yields of SrF ₂ :Yb ³⁺ ,Er ³⁺ sub-micron particles prepared by precipitation from aqueous solution. Journal of Materials Chemistry C, 2018, 6, 598-604.	2.7	61
62	Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces. Sustainable Energy and Fuels, 2018, 2, 2754-2761.	2.5	61
63	Quantifying barriers to monovalent anion transport in narrow non-polar pores. Physical Chemistry Chemical Physics, 2012, 14, 11633.	1.3	60
64	Co-precipitation synthesis and photoluminescence properties of BaTiF ₆ :Mn ⁴⁺ : an efficient red phosphor for warm white LEDs. Journal of Materials Chemistry C, 2018, 6, 127-133.	2.7	60
65	Vacuumâ€Assisted Growth of Lowâ€Bandgap Thin Films (FA _{0.8} MA _{0.2} Sn _{0.5} Pb _{0.5} I ₃) for Allâ€Perovskite Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902583.	10.2	60
66	Self-cleaning performance of superhydrophobic hot-embossed fluoropolymer films for photovoltaic modules. Solar Energy Materials and Solar Cells, 2019, 189, 188-196.	3.0	59
67	Upconversion properties of SrF ₂ :Yb ³⁺ ,Er ³⁺ single crystals. Journal of Materials Chemistry C, 2020, 8, 4093-4101.	2.7	58
68	Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nature Energy, 2022, 7, 620-630.	19.8	58
69	Renewable energy powered membrane technology: Case study of St. Dorcas borehole in Tanzania demonstrating fluoride removal via nanofiltration/reverse osmosis. Separation and Purification Technology, 2016, 170, 445-452.	3.9	57
70	Highly Efficient La ₂ O ₃ :Yb ³⁺ ,Tm ³⁺ Single-Band NIR-to-NIR Upconverting Microcrystals for Anti-Counterfeiting Applications. ACS Applied Materials & Interfaces, 2018, 10, 39851-39859.	4.0	57
71	Renewable energy powered membrane technology: The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination. Journal of Membrane Science, 2011, 370, 34-44.	4.1	56
72	Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination. Applied Energy, 2019, 253, 113524.	5.1	56

#	Article	IF	CITATIONS
73	Photovoltaic-powered desalination system for remote Australian communities. Renewable Energy, 2003, 28, 2013-2022.	4.3	55
74	A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems. International Journal of Hydrogen Energy, 2007, 32, 2703-2711.	3.8	55
75	Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods. Applied Optics, 2011, 50, 3303.	2.1	55
76	Methodology of energy yield modelling of perovskite-based multi-junction photovoltaics. Optics Express, 2019, 27, A507.	1.7	55
77	Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting. Solar Energy Materials and Solar Cells, 2012, 103, 11-16.	3.0	54
78	Bioinspired Superhydrophobic Highly Transmissive Films for Optical Applications. Small, 2016, 12, 6144-6152.	5.2	54
79	Anisotropic energy transfer in crystalline chromophore assemblies. Nature Communications, 2018, 9, 4332.	5.8	54
80	Luminescent Ethylene Vinyl Acetate Encapsulation Layers for Enhancing the Short Wavelength Spectral Response and Efficiency of Silicon Photovoltaic Modules. IEEE Journal of Photovoltaics, 2011, 1, 29-36.	1.5	53
81	Electrodialytic removal of NaCl from water: Impacts of using pulsed electric potential on ion transport and water dissociation phenomena. Journal of Membrane Science, 2013, 435, 99-109.	4.1	52
82	Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics. Solar Energy Materials and Solar Cells, 2015, 140, 217-223.	3.0	52
83	Renewable energy powered membrane technology: Fluoride removal in a rural community in northern Tanzania. Separation and Purification Technology, 2015, 149, 349-361.	3.9	51
84	Upconversion solar cell measurements under real sunlight. Optical Materials, 2018, 84, 389-395.	1.7	51
85	Arrays of Chiral Nanotubes and a Layered Coordination Polymer Containing Gallium–Sulfide Supertetrahedral Clusters. Chemistry - A European Journal, 2010, 16, 4462-4465.	1.7	50
86	Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 192, 65-71.	3.0	50
87	Renewable energy-powered membrane technology: Supercapacitors for buffering resource fluctuations in a wind-powered membrane system for brackish water desalination. Renewable Energy, 2013, 50, 126-135.	4.3	48
88	Upconverter Silicon Solar Cell Devices for Efficient Utilization of Sub-Band-Gap Photons Under Concentrated Solar Radiation. IEEE Journal of Photovoltaics, 2014, 4, 183-189.	1.5	48
89	Bifacial n-type silicon solar cells for upconversion applications. Solar Energy Materials and Solar Cells, 2014, 128, 57-68.	3.0	48
90	Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%. Journal of Materials Chemistry A, 2017, 5, 9897-9906.	5.2	47

#	Article	IF	CITATIONS
91	Spontaneous enhancement of the stable power conversion efficiency in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 670-682.	5.2	47
92	Inorganic fluorescent marker materials for identification of post-consumer plastic packaging. Resources, Conservation and Recycling, 2020, 161, 104976.	5.3	47
93	Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium–Porphyrin-Based Surface-Anchored Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 15688-15697.	4.0	46
94	Impact of speciation on fluoride, arsenic and magnesium retention by nanofiltration/reverse osmosis in remote Australian communities. Desalination, 2009, 248, 177-183.	4.0	45
95	Renewable energy powered membrane technology: Impact of solar irradiance fluctuations on performance of a brackish water reverse osmosis system. Separation and Purification Technology, 2015, 156, 379-390.	3.9	45
96	Energy yield of bifacial textured perovskite/silicon tandem photovoltaic modules. Solar Energy Materials and Solar Cells, 2020, 208, 110367.	3.0	45
97	Renewable energy powered membrane technology: Brackish water desalination system operated using real wind fluctuations and energy buffering. Journal of Membrane Science, 2014, 468, 224-232.	4.1	44
98	A de novo strategy for predictive crystal engineering to tune excitonic coupling. Nature Communications, 2019, 10, 2048.	5.8	44
99	Texture of the Viola Flower for Light Harvesting in Photovoltaics. ACS Photonics, 2017, 4, 2687-2692.	3.2	43
100	Investigation of Host Polymers for Luminescent Solar Concentrators. Energy Technology, 2017, 5, 1037-1044.	1.8	43
101	TiO2 DLAR coatings for planar silicon solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11, 27-32.	4.4	42
102	Drying Dynamics of Solutionâ€Processed Perovskite Thinâ€Film Photovoltaics: In Situ Characterization, Modeling, and Process Control. Advanced Energy Materials, 2019, 9, 1901581.	10.2	42
103	Design, development and indoor performance analysis of a low concentrating dielectric photovoltaic module. Solar Energy, 2014, 103, 390-401.	2.9	41
104	Permanently dispelling a myth of photovoltaics via the adoption of a new net energy indicator. Renewable and Sustainable Energy Reviews, 2007, 11, 162-172.	8.2	40
105	Preparation and photophysical studies of [Ln(hfac)3DPEPO], Ln = Eu, Tb, Yb, Nd, Gd; interpretation of total photoluminescence quantum yields. Dalton Transactions, 2013, 42, 13537.	1.6	40
106	Finely-tuned NIR-to-visible up-conversion in La ₂ O ₃ :Yb ³⁺ ,Er ³⁺ microcrystals with high quantum yield. Journal of Materials Chemistry C, 2017, 5, 11010-11017.	2.7	40
107	Determination of complex optical constants and photovoltaic device design of all-inorganic CsPbBr ₃ perovskite thin films. Optics Express, 2020, 28, 15706.	1.7	40
108	Design considerations for a solar-powered desalination system for remote communities in Australia. Desalination, 2002, 144, 193-199.	4.0	39

#	Article	IF	CITATIONS
109	Enhanced Photoluminescence in Quantum Dots–Porous Polymer Hybrid Films Fabricated by Microcellular Foaming. Advanced Optical Materials, 2019, 7, 1900223.	3.6	39
110	Planar photonic solar concentrators for building-integrated photovoltaics. Solar Energy Materials and Solar Cells, 2012, 104, 53-57.	3.0	38
111	Physical performance limitations of luminescent down-conversion layers for photovoltaic applications. Solar Energy Materials and Solar Cells, 2014, 122, 8-14.	3.0	37
112	Potential cost reduction of buried-contact solar cells through the use of titanium dioxide thin films. Solar Energy, 2004, 76, 269-276.	2.9	35
113	Smartphoneâ€Based Luminescent Thermometry via Temperature‣ensitive Delayed Fluorescence from Gd ₂ O ₂ S:Eu ³⁺ . Advanced Optical Materials, 2020, 8, 2000507.	3.6	35
114	Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter, 2021, 4, 1391-1412.	5.0	35
115	Upscaling of perovskite solar modules: The synergy of fully evaporated layer fabrication and allâ€kaserâ€scribed interconnections. Progress in Photovoltaics: Research and Applications, 2022, 30, 360-373.	4.4	35
116	Testing of a hybrid membrane system for groundwater desalination in an Australian national park. Desalination, 2005, 183, 55-62.	4.0	34
117	An up-conversion luminophore with high quantum yield and brightness based on BaF ₂ :Yb ³⁺ ,Er ³⁺ single crystals. Journal of Materials Chemistry C, 2021, 9, 3493-3503.	2.7	34
118	Efficient All-Evaporated <i>pin</i> -Perovskite Solar Cells: A Promising Approach Toward Industrial Large-Scale Fabrication. IEEE Journal of Photovoltaics, 2019, 9, 1249-1257.	1.5	33
119	Scalable Processing of Low-Temperature TiO ₂ Nanoparticles for High-Efficiency Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 47-58.	2.5	33
120	Laminated Perovskite Photovoltaics: Enabling Novel Layer Combinations and Device Architectures. Advanced Functional Materials, 2020, 30, 1907481.	7.8	33
121	A comparison of hydrogen storage technologies for solar-powered stand-alone power supplies: A photovoltaic system sizing approach. International Journal of Hydrogen Energy, 2007, 32, 2712-2718.	3.8	32
122	The Impact of Luminescent Down Shifting on the Performance of CdTe Photovoltaics: Impact of the Module Vintage. IEEE Journal of Photovoltaics, 2014, 4, 457-464.	1.5	32
123	Design and Color Flexibility for Inkjet-Printed Perovskite Photovoltaics. ACS Applied Energy Materials, 2019, 2, 764-769.	2.5	32
124	Application of solar-powered desalination in a remote town in South Australia. Desalination, 2009, 248, 72-82.	4.0	31
125	Preparation of photoluminescent PMMA doped with tris(pyrazol-1-yl)borate lanthanide complexes. Journal of Luminescence, 2012, 132, 2378-2384.	1.5	31
126	Rigorous wave-optical treatment of photon recycling in thermodynamics of photovoltaics: Perovskite thin-film solar cells. Physical Review B, 2018, 98, .	1.1	31

#	Article	IF	CITATIONS
127	Efficient Photocatalytic Removal of Methylene Blue Using a Metalloporphyrin–Poly(vinylidene) Tj ETQq1 1 C 31763-31776.	0.784314 rgBT 4.0	/Overlock] 31
128	Energy yield of all thinâ€film perovskite/CIGS tandem solar modules. Progress in Photovoltaics: Research and Applications, 2019, 27, 290-298.	4.4	31
129	Renewable energy powered membrane technology: System resilience under solar irradiance fluctuations during the treatment of fluoride-rich natural waters by different nanofiltration/reverse osmosis membranes. Journal of Membrane Science, 2021, 617, 118452.	4.1	31
130	Coupling of sunlight into optical fibres and spectral dependence for solar energy applications. Solar Energy, 2013, 93, 235-243.	2.9	30
131	Excitonically Coupled States in Crystalline Coordination Networks. Chemistry - A European Journal, 2017, 23, 14316-14322.	1.7	30
132	Triple cation mixed-halide perovskites for tunable lasers. Optical Materials Express, 2017, 7, 4082.	1.6	30
133	Photoluminescence studies on europium-based scorpionate-complex. Inorganic Chemistry Communication, 2011, 14, 1762-1766.	1.8	29
134	Room-Temperature High-Efficiency Solid-State Triplet–Triplet Annihilation Up-Conversion in Amorphous Poly(olefin sulfone)s. ACS Applied Materials & Interfaces, 2017, 9, 8280-8286.	4.0	29
135	Renewable energy powered membrane technology: Safe operating window of a brackish water desalination system. Journal of Membrane Science, 2014, 468, 400-409.	4.1	28
136	Perovskite/Hole Transport Layer Interface Improvement by Solvent Engineering of Spiro-OMeTAD Precursor Solution. ACS Applied Materials & Interfaces, 2019, 11, 44802-44810.	4.0	28
137	A fully planar solar pumped laser based on a luminescent solar collector. Communications Physics, 2020, 3, .	2.0	28
138	From concept to commercialisation: student learning in a sustainable engineering innovation project. European Journal of Engineering Education, 2007, 32, 143-165.	1.5	27
139	Spectroscopy and near infrared upconversion of Er 3+ -doped TZNT glasses. Journal of Luminescence, 2016, 169, 270-276.	1.5	27
140	Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20122-20132.	5.2	27
141	Ratiometric Luminescent Thermometry with Excellent Sensitivity over a Broad Temperature Range Utilizing Thermallyâ€Assisted and Multiphoton Upconversion in Triplyâ€Doped La ₂ O ₃ :Yb ³⁺ /Er ³⁺ /Nd ³⁺ . Advanced Optical Materials. 2021. 9. 2001901.	3.6	27
142	Photonic Crystalâ€Driven Spectral Concentration for Upconversion Photovoltaics. Advanced Optical Materials, 2015, 3, 568-574.	3.6	26
143	Critical Power Density: A Metric To Compare the Excitation Power Density Dependence of Photon Upconversion in Different Inorganic Host Materials. Journal of Physical Chemistry A, 2019, 123, 6799-6811.	1.1	26
144	Photodegradation of Triple-Cation Perovskite Solar Cells: The Role of Spectrum and Bias Conditions. ACS Applied Energy Materials, 2021, 4, 3083-3092.	2.5	26

#	Article	IF	CITATIONS
145	Tuning Optical Properties by Controlled Aggregation: Electroluminescence Assisted by Thermallyâ€Activated Delayed Fluorescence from Thin Films of Crystalline Chromophores. Chemistry - A European Journal, 2020, 26, 17016-17020.	1.7	25
146	Inâ€plane optical anisotropy of GaAs/AlAs multiple quantum wells probed by microscopic reflectance difference spectroscopy. Applied Physics Letters, 1996, 69, 782-784.	1.5	24
147	Growth of polycrystalline silicon on glass by selective laserâ€induced nucleation. Applied Physics Letters, 1996, 69, 3719-3721.	1.5	24
148	Potential of wind-powered renewable energy membrane systems for Ghana. Desalination, 2009, 248, 169-176.	4.0	24
149	The effect of intermittent operation on a wind-powered membrane system for brackish water desalination. Water Science and Technology, 2012, 65, 867-874.	1.2	24
150	Integration of Color and Graphical Design for Photovoltaic Modules Using Luminescent Materials. IEEE Journal of Photovoltaics, 2015, 5, 584-590.	1.5	24
151	The Janus-faced chromophore: a donor–acceptor dyad with dual performance in photon up-conversion. Chemical Communications, 2018, 54, 1607-1610.	2.2	24
152	Lanthanide Sensitizers for Large Anti-Stokes Shift Near-Infrared-to-Visible Triplet–Triplet Annihilation Photon Upconversion. Journal of Physical Chemistry Letters, 2020, 11, 2477-2481.	2.1	24
153	Harvesting Sub-bandgap Photons via Upconversion for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 54874-54883.	4.0	24
154	System design and performance testing of a hybrid membrane — photovltaic desalination system. Desalination, 2005, 179, 51-59.	4.0	23
155	Monodisperse β-NaYF ₄ :Yb ³⁺ ,Tm ³⁺ hexagonal microplates with efficient NIR-to-NIR up-conversion emission developed via ion exchange. Journal of Materials Chemistry C, 2017, 5, 9770-9777.	2.7	23
156	A method for correcting the excitation power density dependence of upconversion emission due to laser-induced heating. Optical Materials, 2018, 82, 65-70.	1.7	23
157	Inkjet-Printed Photoluminescent Patterns of Aggregation-Induced-Emission Chromophores on Surface-Anchored Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 25754-25762.	4.0	23
158	Anticounterfeiting Labels with Smartphoneâ€Readable Dynamic Luminescent Patterns Based on Tailored Persistent Lifetimes in Gd ₂ O ₂ S:Eu ³⁺ /Ti ⁴⁺ . Advanced Materials Technologies, 2021, 6, 2100047.	3.0	23
159	Experimental validation of a modeling framework for upconversion enhancement in 1D-photonic crystals. Nature Communications, 2021, 12, 104.	5.8	22
160	Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskites. Materials Today, 2021, 49, 35-47.	8.3	22
161	Highly Porous Nanocluster TiO[sub 2] Films Deposited Using APCVD in an Excess of Water Vapor. Journal of the Electrochemical Society, 2005, 152, F71.	1.3	21
162	The implementation of temperature control to an inductiveâ€coil photoconductance instrument for the range of 0–230°C. Progress in Photovoltaics: Research and Applications, 2008, 16, 609-613.	4.4	21

#	Article	IF	CITATIONS
163	Photodegradation of steroid-hormone micropollutants in a flow-through membrane reactor coated with Pd(II)-porphyrin. Applied Catalysis B: Environmental, 2021, 291, 120097.	10.8	21
164	Cubic <i>versus</i> hexagonal – phase, size and morphology effects on the photoluminescence quantum yield of NaGdF ₄ :Er ³⁺ /Yb ³⁺ upconverting nanoparticles. Nanoscale, 2022, 14, 1492-1504.	2.8	21
165	Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices. Optics Letters, 2014, 39, 2904.	1.7	20
166	Interface disorder in large single- and multi-shell upconverting nanocrystals. Journal of Materials Chemistry C, 2019, 7, 1164-1172.	2.7	20
167	Optimization of SnO ₂ electron transport layer for efficient planar perovskite solar cells with very low hysteresis. Materials Advances, 2022, 3, 456-466.	2.6	20
168	Physico-chemical water quality in Ghana: Prospects for water supply technology implementation. Desalination, 2009, 248, 193-203.	4.0	19
169	Enhanced up-conversion for photovoltaics via concentrating integrated optics. Optics Express, 2014, 22, A452.	1.7	19
170	Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays. Solar Energy, 2017, 150, 156-160.	2.9	19
171	An enhanced energy migration strategy in upconverting nanocrystals: color-tuning with high quantum yield. Journal of Materials Chemistry C, 2019, 7, 7371-7377.	2.7	19
172	Hot-embossed microcone-textured fluoropolymer as self-cleaning and anti-reflective photovoltaic module covers. Solar Energy Materials and Solar Cells, 2020, 214, 110582.	3.0	19
173	Determination of the optical properties of non-uniformly thick non-hydrogenated sputtered silicon thin films on glass. Thin Solid Films, 2004, 460, 247-255.	0.8	18
174	Enhancing the photoluminescence of surface anchored metal–organic frameworks: mixed linkers and efficient acceptors. Physical Chemistry Chemical Physics, 2018, 20, 11564-11576.	1.3	18
175	Interplay of structural dynamics and electronic effects in an engineered assembly of pentacene in a metal–organic framework. Chemical Science, 2021, 12, 4477-4483.	3.7	18
176	High temperature processing of TiO2 thin films for application in silicon solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 339-348.	0.9	17
177	Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: Correcting for absorption/re-emission. Review of Scientific Instruments, 2014, 85, 063109.	0.6	17
178	Highly efficient upconversion in Er^3+ doped BaY_2F_8 single crystals: dependence of quantum yield on excitation wavelength and thickness. Optics Express, 2015, 23, A903.	1.7	17
179	Self-Cleaning Microcavity Array for Photovoltaic Modules. ACS Applied Materials & Interfaces, 2018, 10, 2929-2936.	4.0	17
180	Enhanced upconversion in one-dimensional photonic crystals: a simulation-based assessment within realistic material and fabrication constraints. Optics Express, 2018, 26, 7537.	1.7	17

#	Article	IF	CITATIONS
181	Interface Pattern Engineering in Coreâ€Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties. Small, 2021, 17, e2104441.	5.2	17
182	Photocurrent enhancement for ultrathin crystalline silicon solar cells via a bioinspired polymeric nanofur film with high forward scattering. Solar Energy Materials and Solar Cells, 2018, 186, 105-110.	3.0	16
183	Microâ€cone textures for improved light inâ€coupling and retroreflectionâ€inspired light trapping at the front surface of solar modules. Progress in Photovoltaics: Research and Applications, 2019, 27, 593-602.	4.4	16
184	Renewable energy powered membrane technology: Experimental investigation of system performance with variable module size and fluctuating energy. Separation and Purification Technology, 2019, 221, 64-73.	3.9	16
185	Guest-responsive polaritons in a porous framework: chromophoric sponges in optical QED cavities. Chemical Science, 2020, 11, 7972-7978.	3.7	16
186	Membranes and renewable energy — a new era of sustainable development for developing countries. Membrane Technology, 2005, 2005, 6-10.	0.5	15
187	Luminescent down-shifting for CdTe solar cells: A review of dyes and simulation of performance. , 2012, , .		15
188	Enhancement of Power Output From a Large-Area Luminescent Solar Concentrator With 4.8× Concentration via Solar Cell Current Matching. IEEE Journal of Photovoltaics, 2017, 7, 802-809.	1.5	15
189	Investigations of singlet and triplet diffusion in thermally activated delayed-fluorescence emitters: Implications for hyperfluorescence. Physical Review B, 2019, 100, .	1.1	15
190	Efficient Ytterbium Near-Infrared Luminophore Based on a Nondeuterated Ligand. Inorganic Chemistry, 2019, 58, 6959-6965.	1.9	15
191	High Quantum Yield Singleâ€Band Green Upconversion in La ₂ O ₃ :Yb ³⁺ , Ho ³⁺ Microcrystals for Anticounterfeiting and Plastic Recycling. Particle and Particle Systems Characterization, 2019, 36, 1800462.	1.2	15
192	Experimental Determination of Complex Optical Constants of Air‣table Inorganic CsPbI ₃ Perovskite Thin Films. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000070.	1.2	15
193	Design strategies for commercial solar cells using the buried contact technology. IEEE Transactions on Electron Devices, 1999, 46, 1984-1992.	1.6	14
194	Increased mc-Si Module Efficiency Using Fluorescent Organic Dyes: A Ray-Tracing Study. , 2006, , .		14
195	Renewable energy-powered membrane technology in Tanzanian communities. Npj Clean Water, 2018, 1, .	3.1	14
196	Determination of Upconversion Quantum Yields Using Charge-Transfer State Fluorescence of Heavy-Atom-Free Sensitizer as a Self-Reference. Journal of Physical Chemistry Letters, 2020, 11, 6560-6566.	2.1	14
197	BODIPY–pyrene donor–acceptor sensitizers for triplet–triplet annihilation upconversion: the impact of the BODIPY-core on upconversion efficiency. Physical Chemistry Chemical Physics, 2022, 24, 3568-3578.	1.3	14
198	Dual-color dynamic anti-counterfeiting labels with persistent emission after visible excitation allowing smartphone authentication. Scientific Reports, 2022, 12, 2100.	1.6	14

#	Article	IF	CITATIONS
199	Tm3+-sensitized up- and down-conversions in nano-structured oxyfluoride glass ceramics. Materials Research Bulletin, 2012, 47, 4433-4437.	2.7	13
200	Liquid Glass for Photovoltaics: Multifunctional Front Cover Glass for Solar Modules. ACS Applied Materials & Interfaces, 2019, 11, 35015-35022.	4.0	13
201	Bimolecular and Auger Recombination in Phase-Stable Perovskite Thin Films from Cryogenic to Room Temperature and Their Effect on the Amplified Spontaneous Emission Threshold. Journal of Physical Chemistry Letters, 2021, 12, 2293-2298.	2.1	13
202	Large area polycrystalline silicon thin films grown by laser-induced nucleation and solid phase crystallization. Thin Solid Films, 1997, 296, 49-52.	0.8	12
203	Geometrical concentration for enhanced up-conversion: A review of recent results in energy and biomedical applications. Optical Materials, 2018, 83, 47-54.	1.7	12
204	Renewable energy powered membrane technology: Energy buffering control system for improved resilience to periodic fluctuations of solar irradiance. Renewable Energy, 2020, 149, 877-889.	4.3	12
205	Bright constant color upconversion based on dual 980 and 1550Ânm excitation of SrF2:Yb3+, Er3+ and β-NaYF4:Yb3+, Er3+ micropowders― considerations for persistence of vision displays. Optical Materials, 2021, 111, 110598.	1.7	12
206	Drying and Coating of Perovskite Thin Films: How to Control the Thin Film Morphology in Scalable Dynamic Coating Systems. ACS Applied Materials & Interfaces, 2022, 14, 11300-11312.	4.0	12
207	Separation and degradation detection of nanogram-per-litre concentrations of radiolabelled steroid hormones using combined liquid chromatography and flow scintillation analysis. Scientific Reports, 2020, 10, 7095.	1.6	11
208	High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact. ACS Applied Materials & Interfaces, 2020, 12, 11428-11437.	4.0	11
209	How free exciton–exciton annihilation lets bound exciton emission dominate the photoluminescence of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures. Journal of Applied Physics, 2021, 129, .	1.1	11
210	Spin-coated kesterite CZTS thin films for photovoltaic applications. Journal of the Korean Physical Society, 2015, 67, 1078-1081.	0.3	10
211	Perovskite Solar Cells: Record Openâ€Circuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure (Adv. Energy Mater. 21/2019). Advanced Energy Materials, 2019, 9, 1970079.	10.2	10
212	Coordination mechanism of cyanine dyes on the surface of core@active shell β-NaGdF ₄ :Yb ³⁺ ,Er ³⁺ nanocrystals and its role in enhancing upconversion luminescence. Journal of Materials Chemistry C, 2021, 9, 16313-16323.	2.7	10
213	Solar Pumping of Fiber Lasers with Solidâ€State Luminescent Concentrators: Design Optimization by Ray Tracing. Advanced Optical Materials, 2021, 9, 2100479.	3.6	10
214	Elucidating the role of metal-ion co-doping towards boosting upconversion luminescence in gadolinium vanadate. Journal of Materials Chemistry C, 2021, 9, 16709-16720.	2.7	10
215	Optics of multiple quantum wells uniaxially stressed along the growth axis. Physical Review B, 1996, 53, 13662-13671.	1.1	9
216	Water–Energy Nexus Perspectives in the Context of Photovoltaicâ€Powered Decentralized Water Treatment Systems: A Tanzanian Case Study. Energy Technology, 2017, 5, 1112-1123.	1.8	9

#	Article	IF	CITATIONS
217	Infiltrated photonic crystals for light-trapping in CuInSe_2 nanocrystal-based solar cells. Optics Express, 2017, 25, A502.	1.7	9
218	Correlative In Situ Multichannel Imaging for Largeâ€Area Monitoring of Morphology Formation in Solutionâ€Processed Perovskite Layers. Solar Rrl, 2022, 6, 2100353.	3.1	9
219	Performance of a small solar-powered hybrid membrane system for remote communities under varying feedwater salinities. Water Science and Technology: Water Supply, 2004, 4, 233-243.	1.0	9
220	Unclonable Antiâ€Counterfeiting Labels Based on Microlens Arrays and Luminescent Microparticles. Advanced Optical Materials, 2022, 10, .	3.6	9
221	Chapter 12 Renewable Energy Powered Water Treatment Systems. Sustainability Science and Engineering, 2010, , 353-373.	0.6	8
222	Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications. Applied Physics Letters, 2016, 109, 143901.	1.5	8
223	Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules. Materials Chemistry Frontiers, 2017, 1, 1888-1894.	3.2	8
224	Highly photoluminescent and stable silicon nanocrystals functionalized <i>via</i> microwave-assisted hydrosilylation. RSC Advances, 2018, 8, 9979-9984.	1.7	8
225	Reaction of porphyrin-based surface-anchored metal–organic frameworks caused by prolonged illumination. Physical Chemistry Chemical Physics, 2018, 20, 29142-29151.	1.3	8
226	CZTSe solar cells prepared by co-evaporation of multilayer Cu–Sn/Cu,Zn,Sn,Se/ZnSe/Cu,Zn,Sn,Se stacks. Physica Scripta, 2019, 94, 105007.	1.2	8
227	Method for accurate experimental determination of singlet and triplet exciton diffusion between thermally activated delayed fluorescence molecules. Chemical Science, 2021, 12, 1121-1125.	3.7	8
228	Nanostructured front electrodes for perovskite/c-Si tandem photovoltaics. Optics Express, 2020, 28, 8878.	1.7	8
229	Freeform surface invisibility cloaking of interconnection lines in thin-film photovoltaic modules. Solar Energy Materials and Solar Cells, 2018, 182, 294-301.	3.0	7
230	Solution-processed and evaporated C60 interlayers for improved charge transport in perovskite photovoltaics. Organic Electronics, 2020, 77, 105526.	1.4	7
231	Impact of silver incorporation at the back contact of Kesterite solar cells on structural and device properties. Thin Solid Films, 2020, 709, 138223.	0.8	7
232	Enhancing Singlet Oxygen Generation in Conjugates of Silicon Nanocrystals and Organic Photosensitizers. Frontiers in Chemistry, 2020, 8, 567.	1.8	7
233	Broadband Near-Infrared Luminescence and Visible Upconversion of Er ³⁺ -Doped Tungstate-Tellurite Glasses. Science of Advanced Materials, 2015, 7, 345-353.	0.1	7
234	Interpreting the Timeâ€Resolved Photoluminescence of Quasiâ€2D Perovskites. Advanced Materials Interfaces, 2021, 8, 2101326.	1.9	7

#	Article	IF	CITATIONS
235	Renewable energy powered membrane technology: Energy consumption analysis of ultrafiltration backwash configurations. Separation and Purification Technology, 2022, 287, 120388.	3.9	7
236	Luminescent Polymer Films from Simple Processing of Coronene and Europium Precursors in Water. European Journal of Inorganic Chemistry, 2014, 2014, 3095-3100.	1.0	6
237	Phonon density of states in lanthanide-based nanocrystals. Physical Review B, 2020, 102, .	1.1	6
238	Toward Stable Perovskite Solar Cell Architectures: Robustness Against Temperature Variations of Real-World Conditions. IEEE Journal of Photovoltaics, 2020, 10, 777-784.	1.5	6
239	Towards mass fabrication of hot embossed plant surface texture replicas as photovoltaic cover layers. , 2018, , .		6
240	Perovskite Solar Cells with Vivid, Angleâ€Invariant, and Customizable Inkjetâ€Printed Colorization for Buildingâ€Integrated Photovoltaics. Solar Rrl, 2022, 6, .	3.1	6
241	Enhancing the Efficiency of Production CdS/CdTe PV Modules by Overcoming Poor Spectral Response at Short Wavelengths Via Luminescence Down-Shifting. , 2006, , .		5
242	Up- and down-conversion materials for photovoltaic devices. , 2012, , .		5
243	Color, graphic design and high efficiency for photovoltaic modules. , 2014, , .		5
244	Rare-earth coordination polymers with multimodal luminescence on the nano-, micro-, and milli-second time scales. IScience, 2021, 24, 102207.	1.9	5
245	Improved photon absorption in dye-functionalized silicon nanocrystals synthesized <i>via</i> microwave-assisted hydrosilylation. Dalton Transactions, 2020, 49, 2290-2299.	1.6	5
246	Noble-metal-free photosensitizers for continuous-flow photochemical oxidation of steroid hormone micropollutants under sunlight. Journal of Membrane Science, 2022, 642, 119981.	4.1	5
247	Single crystal monolithic upconverter solar cell device tandems with integrated optics. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 239.	0.9	5
248	Light Management for Enhancing Optical Gain in a Solarâ€Pumped Fiber Laser Employing a Solidâ€ S tate Luminescent Solar Concentrator. Advanced Photonics Research, 2022, 3, .	1.7	5
249	First ever full size CdTe luminescent down-shifting module. , 2012, , .		4
250	Autonomous Solar-Powered Desalination Systems for Remote Communities. , 2017, , 75-125.		4
251	Impact of Feedwater Salinity on Energy Requirements of a Small-Scale Membrane Filtration System. , 2009, , 123-137.		4
252	Renewable energy powered membrane systems: inorganic contaminant removal from Australian groundwaters. Membrane Water Treatment, 2011, 2, 239-250.	0.5	4

#	Article	IF	CITATIONS
253	Expanding the Angle of Incidence Tolerance of Unclonable Anticounterfeiting Labels Based on Microlens Arrays and Luminescent Microparticles. Advanced Photonics Research, 0, , 2100202.	1.7	4
254	Performance of luminescence down shifting for CdTe solar cells as a function of the incident solar spectrum. , 2012, , .		3
255	External Thermalization of Carriers With Luminescent Down Shifting for Lower Operating Solar Cell Temperature. IEEE Journal of Photovoltaics, 2014, 4, 1532-1537.	1.5	3
256	Photovoltaic Devices: Electronâ€Beamâ€Evaporated Nickel Oxide Hole Transport Layers for Perovskiteâ€Based Photovoltaics (Adv. Energy Mater. 12/2019). Advanced Energy Materials, 2019, 9, 1970035.	10.2	3
257	Sensitizing TADF Absorption Using Variable Length Oligo(phenylene ethynylene) Antennae. Frontiers in Chemistry, 2020, 8, 126.	1.8	3
258	Renewable Energy Powered Membrane Technology: Electrical Energy Storage Options for a Photovoltaic-Powered Brackish Water Desalination System. Applied Sciences (Switzerland), 2021, 11, 856.	1.3	3
259	Phase evolution during annealing of low-temperature co-evaporated precursors for CZTSe solar cell absorbers. Journal of Applied Physics, 2021, 129, .	1.1	3
260	Two Colour Excitation Up-Conversion Efficiency Enhancement for a Silicon Photovoltaic Device using Er3+-Doped Phosphors. , 2006, , .		2
261	Response to Comment on "Experimental Energy Barriers to Anions Transporting through Nanofiltration Membranes― Environmental Science & Technology, 2013, 47, 130717103414008.	4.6	2
262	Potential of Silicon Phononic Crystals for Photovoltaic Applications. IEEE Journal of Photovoltaics, 2017, 7, 1503-1510.	1.5	2
263	Photoluminescent Tracer Effects on Thermoplastic Polymer Recycling. , 2020, , 1-13.		2
264	Enhancement of Upconversion for Photovoltaics with β-NaYF4:Er3+ and Concentrating Integrated Optics. , 2013, , .		2
265	Integrating photovoltaic cells into decorative architectural glass using traditonal glasspainting techniques and fluorescent dyes. International Journal of Sustainable Development and Planning, 2015, 10, 863-879.	0.3	2
266	Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices. Optics Express, 2012, 20, A879-87.	1.7	2
267	Charge Carrier and Exciton Dynamics in Perovskites Revealed by Timeâ€Integrated Photoluminescence after Doubleâ€Pulse Excitation. Advanced Materials Technologies, 0, , 2200152.	3.0	2
268	Photovoltaics literature survey (no. 24). Progress in Photovoltaics: Research and Applications, 2003, 11, 353-355.	4.4	1
269	Photovoltaics literature survey(no. 29). Progress in Photovoltaics: Research and Applications, 2004, 12, 249-251.	4.4	1
270	Photovoltaics literature survey(no. 30). Progress in Photovoltaics: Research and Applications, 2004, 12, 317-321.	4.4	1

#	Article	IF	CITATIONS
271	Photovoltaics literature survey (no. 35). Progress in Photovoltaics: Research and Applications, 2005, 13, 89-90.	4.4	1
272	Photovoltaics literature survey (no. 42). Progress in Photovoltaics: Research and Applications, 2005, 13, 725-727.	4.4	1
273	Photovoltaics literature survey (no. 45). Progress in Photovoltaics: Research and Applications, 2006, 14, 281-287.	4.4	1
274	Photovoltaics literature survey (no. 46). Progress in Photovoltaics: Research and Applications, 2006, 14, 373-379.	4.4	1
275	Upconverter materials and upconversion solar-cell devices: simulation and characterization with broad solar spectrum illumination. , 2014, , .		1
276	Enhanced Up-conversion for Photovoltaics using 2D Photonic Crystals. , 2013, , .		1
277	Progress Towards Enhancing the Performance of c-Si Photovoltaic Devices via Up- and Down-Conversion. , 2013, , .		1
278	Developing Efficient Upconverter Silicon Solar Cell Devices. , 2013, , .		1
279	Realization of Colors and Patterns for Inkjet-Printed Perovskite Solar Cells. , 2018, , .		1
280	Progress on Perovskite Solar Cells with All-Inkjet-Printed Absorber and Extraction Layers. , 2020, , .		1
281	Crystalline assembly of perylene in metal–organic framework thin film: J-aggregate or excimer? Insight into the electronic structure. Journal of Physics Condensed Matter, 2021, 33, 034001.	0.7	1
282	Influence of Wind Speed on Volcano Ash Removal From Self-Cleaning Cover Films Dedicated for Photovoltaics. IEEE Journal of Photovoltaics, 2022, 12, 453-460.	1.5	1
283	Photovoltaics literature survey (no. 20). Progress in Photovoltaics: Research and Applications, 2003, 11, 73-76.	4.4	0
284	Photovoltaics literature survey (no. 21). Progress in Photovoltaics: Research and Applications, 2003, 11, 151-153.	4.4	0
285	Photovoltaics Literature Survey (No. 22). Progress in Photovoltaics: Research and Applications, 2003, 11, 221-224.	4.4	0
286	Photovoltaics literature survey (No. 23). Progress in Photovoltaics: Research and Applications, 2003, 11, 289-291.	4.4	0
287	Photovoltaics literature survey (no. 25). Progress in Photovoltaics: Research and Applications, 2003, 11, 425-428.	4.4	0
288	Photovoltaics literature survey (No. 26). Progress in Photovoltaics: Research and Applications, 2003, 11, 495-497.	4.4	0

#	Article	IF	CITATIONS
289	Photovoltaics literature survey (no. 27). Progress in Photovoltaics: Research and Applications, 2003, 11, 565-568.	4.4	0
290	Photovoltaics literature survey(no. 28). Progress in Photovoltaics: Research and Applications, 2004, 12, 63-65.	4.4	0
291	Photovoltaics literature survey(no. 31). Progress in Photovoltaics: Research and Applications, 2004, 12, 387-391.	4.4	0
292	Photovoltaics literature survey(no. 32). Progress in Photovoltaics: Research and Applications, 2004, 12, 497-501.	4.4	0
293	Photovoltaics literature survey (no. 33). Progress in Photovoltaics: Research and Applications, 2004, 12, 569-572.	4.4	0
294	Photovoltaics literature survey (no. 34). Progress in Photovoltaics: Research and Applications, 2004, 12, 623-626.	4.4	0
295	Photovoltaics literature survey (no. 36). Progress in Photovoltaics: Research and Applications, 2005, 13, 173-178.	4.4	0
296	Photovoltaics literature survey (no. 37). Progress in Photovoltaics: Research and Applications, 2005, 13, 271-275.	4.4	0
297	Photovoltaics literature survey (no. 38). Progress in Photovoltaics: Research and Applications, 2005, 13, 365-368.	4.4	0
298	Photovoltaics literature survey (no. 39). Progress in Photovoltaics: Research and Applications, 2005, 13, 457-460.	4.4	0
299	Photovoltaics literature survey (no. 40). Progress in Photovoltaics: Research and Applications, 2005, 13, 545-549.	4.4	0
300	Photovoltaics literature survey (no. 41). Progress in Photovoltaics: Research and Applications, 2005, 13, 641-643.	4.4	0
301	Photovoltaic Devices. , 2006, , 8-1-8-27.		0
302	Photovoltaics literature survey (no. 43). Progress in Photovoltaics: Research and Applications, 2006, 14, 89-93.	4.4	0
303	Photovoltaics literature survey (no. 44). Progress in Photovoltaics: Research and Applications, 2006, 14, 191-194.	4.4	0
304	3D Colloidal photonic crystal fabrication improved by AC fields for frequency conversion enhancement in photovoltaics. , 2011, , .		0
305	Comprehensive analysis of photonic effects on up-conversion of β-NaYF4:Er3+nanoparticles in an organic-inorganic hybrid 1D photonic crystal. , 2016, , .		0
306	Enhanced color conversion of quantum dots - polymer hybrid films in light emitting diodes. , 2019, , .		0

#	Article	IF	CITATIONS
307	In situ reflectance- photoluminescence imaging on solution-processed perovskite thin-films. , 2021, , .		0
308	Impact of Fabrication Parameters on the Self-cleaning Performance of Hot-embossed Fluoropolymer Films for Photovoltaic Modules. , 2018, , .		0
309	A Novel Route to Plastics Recycling via Unique, Background-free, Micro-scale Photonic Markers. , 2018, , .		Ο
310	Nanophotonic perovskite thin-film solar cells by thermal nano-imprint lithography. , 2019, , .		0
311	Superhydrophobic self-cleaning cover sheets for photovoltaic modules. , 2019, , .		Ο
312	Continuous Wave Amplified Spontaneous Emission from Mixed Cation Perovskite devices. , 2019, , .		0
313	Upconversion performance enhancement in real 1D photonic crystals: simulation, experiment and perspectives for photovoltaics. , 2019, , .		Ο
314	Interface Pattern Engineering in Coreâ€Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties (Small 47/2021). Small, 2021, 17, 2170246.	5.2	0
315	Frontiers in Photonics Spot Light. Frontiers in Photonics, 2022, 3, .	1.1	0