List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2241224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Detection and Ultrasensitive Quantification of SARS-CoV-2 IgG Antibodies in Clinical Plasma Samples Using Epitope-Modified Nanoplasmonic Biosensing Platforms. ACS Applied Materials & Interfaces, 2022, 14, 26517-26527.	4.0	8
2	Multiplexed and High-Throughput Label-Free Detection of RNA/Spike Protein/IgG/IgM Biomarkers of SARS-CoV-2 Infection Utilizing Nanoplasmonic Biosensors. Analytical Chemistry, 2021, 93, 8754-8763.	3.2	44
3	Colloidal Synthesis of Single-Layer Quasi-Ruddlesden–Popper Phase Bismuth-Based Two-Dimensional Perovskite Nanosheets with Controllable Optoelectronic Properties. Chemistry of Materials, 2021, 33, 5917-5925.	3.2	6
4	Nanocurcumin-Loaded UCNPs for Cancer Theranostics: Physicochemical Properties, In Vitro Toxicity, and In Vivo Imaging Studies. Nanomaterials, 2021, 11, 2234.	1.9	13
5	Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Analytical Chemistry, 2021, 93, 2578-2588.	3.2	30
6	Photoswitchable Machine-Engineered Plasmonic Nanosystem with High Optical Response for Ultrasensitive Detection of microRNAs and Proteins Adaptively. Analytical Chemistry, 2021, 93, 13935-13944.	3.2	8
7	Covalent Surface Modification of Ti ₃ C ₂ T _{<i>x</i>} MXene with Chemically Active Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films. ACS Nano, 2021, 15, 19600-19612.	7.3	37
8	Reversible Tuning of the Plasmoelectric Effect in Noble Metal Nanostructures Through Manipulation of Organic Ligand Energy Levels. Nano Letters, 2020, 20, 192-200.	4.5	30
9	Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma. Analyst, The, 2020, 145, 7662-7672.	1.7	10
10	NaGdF4:Yb,Er-Ag nanowire hybrid nanocomposite for multifunctional upconversion emission, optical imaging, MRI and CT imaging applications. Mikrochimica Acta, 2020, 187, 317.	2.5	26
11	Bottom-Up Fabrication of Plasmonic Nanoantenna-Based High-throughput Multiplexing Biosensors for Ultrasensitive Detection of microRNAs Directly from Cancer Patients' Plasma. Analytical Chemistry, 2020, 92, 9295-9304.	3.2	22
12	A novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses. Analyst, The, 2020, 145, 4173-4180.	1.7	29
13	Ultrathin Plasmonic Tungsten Oxide Quantum Wells with Controllable Free Carrier Densities. Journal of the American Chemical Society, 2020, 142, 5938-5942.	6.6	50
14	PMAO coated Na(Gd0.5Lu0.5)F4:Nd3+ nanocrystals as multifunctional contrast agent with NIR optical, X-ray and magnetic imaging properties. Materials Science and Engineering C, 2019, 101, 283-291.	3.8	2
15	Luminomagnetic Nd 3+ doped fluorapatite coated Fe 3 O 4 nanostructures for biomedical applications. Journal of the American Ceramic Society, 2019, 102, 2558-2568.	1.9	5
16	Flexible Polymer-Assisted Mesoscale Self-Assembly of Colloidal CsPbBr ₃ Perovskite Nanocrystals into Higher Order Superstructures with Strong Inter-Nanocrystal Electronic Coupling. Journal of the American Chemical Society, 2019, 141, 1526-1536.	6.6	54
17	Plasmoelectronic-Based Ultrasensitive Assay of Tumor Suppressor microRNAs Directly in Patient Plasma: Design of Highly Specific Early Cancer Diagnostic Technology. Analytical Chemistry, 2019, 91, 1894-1903.	3.2	28
18	Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst, The, 2018, 143, 2012-2022.	1.7	89

#	Article	IF	CITATIONS
19	Achieving biosensing at attomolar concentrations of cardiac troponin T in human biofluids by developing a label-free nanoplasmonic analytical assay. Analyst, The, 2017, 142, 2442-2450.	1.7	32
20	Emission enhancement through Nd3+-Yb3+ energy transfer in multifunctional NaGdF4 nanocrystals. Applied Physics Letters, 2017, 110, 223107.	1.5	17
21	Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties. Chemistry of Materials, 2017, 29, 3526-3537.	3.2	37
22	Unraveling the Mechanism Underlying Surface Ligand Passivation of Colloidal Semiconductor Nanocrystals: A Route for Preparing Advanced Hybrid Nanomaterials. Chemistry of Materials, 2017, 29, 8838-8849.	3.2	18
23	Elucidating the role of surface passivating ligand structural parameters in hole wave function delocalization in semiconductor cluster molecules. Nanoscale, 2017, 9, 14127-14138.	2.8	11
24	Ultrafast Exciton Dynamics in Shape-Controlled Methylammonium Lead Bromide Perovskite Nanostructures: Effect of Quantum Confinement on Charge Carrier Recombination. Journal of Physical Chemistry C, 2017, 121, 28556-28565.	1.5	19
25	Synthesis and characterization of Na(Gd0.5Lu0.5)F4: Nd3+,a core-shell free multifunctional contrast agent. Journal of Alloys and Compounds, 2017, 695, 280-285.	2.8	10
26	Dual Role of Electron-Accepting Metal-Carboxylate Ligands: Reversible Expansion of Exciton Delocalization and Passivation of Nonradiative Trap-States in Molecule-like CdSe Nanocrystals. Journal of the American Chemical Society, 2016, 138, 12813-12825.	6.6	29
27	Pure white-light emitting ultrasmall organic–inorganic hybrid perovskite nanoclusters. Nanoscale, 2016, 8, 17433-17439.	2.8	41
28	Mesoscale Growth and Assembly of Bright Luminescent Organolead Halide Perovskite Quantum Wires. Chemistry of Materials, 2016, 28, 5043-5054.	3.2	63
29	Ultrashort, Angstrom-Scale Decay of Surface-Enhanced Raman Scattering at Hot Spots. Journal of Physical Chemistry C, 2016, 120, 24973-24981.	1.5	14
30	Investigating the Control by Quantum Confinement and Surface Ligand Coating of Photocatalytic Efficiency in Chalcopyrite Copper Indium Diselenide Nanocrystals. Chemistry of Materials, 2016, 28, 1107-1120.	3.2	29
31	Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly. Nanoscale, 2015, 7, 11667-11677.	2.8	15
32	Mechanistic Study of the Formation of Bright White Light-Emitting Ultrasmall CdSe Nanocrystals: Role of Phosphine Free Selenium Precursors. Chemistry of Materials, 2015, 27, 1057-1070.	3.2	41
33	Molecule-like CdSe Nanoclusters Passivated with Strongly Interacting Ligands: Energy Level Alignment and Photoinduced Ultrafast Charge Transfer Processes. Journal of Physical Chemistry C, 2015, 119, 2813-2821.	1.5	19
34	Label-Free Nanoplasmonic-Based Short Noncoding RNA Sensing at Attomolar Concentrations Allows for Quantitative and Highly Specific Assay of MicroRNA-10b in Biological Fluids and Circulating Exosomes. ACS Nano, 2015, 9, 11075-11089.	7.3	203
35	Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties. ACS Applied Materials & amp; Interfaces, 2015, 7, 21465-21471.	4.0	6
36	Correlated Optical Spectroscopy and Electron Microscopy Studies of the Slow Ostwald-Ripening Growth of Silver Nanoparticles under Controlled Reducing Conditions. Plasmonics, 2014, 9, 111-120.	1.8	9

#	Article	IF	CITATIONS
37	Isolation of Bright Blue Light-Emitting CdSe Nanocrystals with 6.5 kDa Core in Gram Scale: High Photoluminescence Efficiency Controlled by Surface Ligand Chemistry. Chemistry of Materials, 2014, 26, 1278-1285.	3.2	76
38	Highly Specific Plasmonic Biosensors for Ultrasensitive MicroRNA Detection in Plasma from Pancreatic Cancer Patients. Nano Letters, 2014, 14, 6955-6963.	4.5	127
39	Enhancing the physicochemical and photophysical properties of small (<2.0 nm) CdSe nanoclusters for intracellular imaging applications. RSC Advances, 2014, 4, 30742.	1.7	12
40	Novel pH-responsive nanoplasmonic sensor: controlling polymer structural change to modulate localized surface plasmon resonance response. RSC Advances, 2014, 4, 15807.	1.7	23
41	Effects of Surface-Passivating Ligands and Ultrasmall CdSe Nanocrystal Size on the Delocalization of Exciton Confinement. Langmuir, 2014, 30, 7851-7858.	1.6	39
42	Ultrasensitive Photoreversible Molecular Sensors of Azobenzene-Functionalized Plasmonic Nanoantennas. Nano Letters, 2014, 14, 532-540.	4.5	105
43	Soft ligand stabilized gold nanoparticles: Incorporation of bipyridyls and two-dimensional assembly. Journal of Colloid and Interface Science, 2014, 426, 107-116.	5.0	8
44	Multimodal bioimaging using a rare earth doped Gd2O2S:Yb/Er phosphor with upconversion luminescence and magnetic resonance properties. Journal of Materials Chemistry B, 2013, 1, 1561.	2.9	85
45	Temperature-Controlled Reversible Localized Surface Plasmon Resonance Response of Polymer-Functionalized Gold Nanoprisms in the Solid State. Journal of Physical Chemistry C, 2013, 117, 26228-26237.	1.5	38
46	Bimodal imaging using neodymium doped gadolinium fluoride nanocrystals with near-infrared to near-infrared downconversion luminescence and magnetic resonance properties. Journal of Materials Chemistry B, 2013, 1, 5702.	2.9	50
47	Photophysical and Redox Properties of Molecule-like CdSe Nanoclusters. Langmuir, 2013, 29, 6187-6193.	1.6	16
48	Rare Earth doped nanoparticles in imaging and PDT. Proceedings of SPIE, 2013, 8594, .	0.8	4
49	Efficient Upconverting Nanophosphors for Imaging and Photodynamic Therapy. Materials Research Society Symposia Proceedings, 2012, 1471, 51.	0.1	0
50	Rare Earth Based Upconverting Materials for Solar Cell Application. Materials Research Society Symposia Proceedings, 2012, 1471, 56.	0.1	0
51	Improved localized surface plasmon resonance biosensing sensitivity based on chemically-synthesized gold nanoprisms as plasmonic transducers. Journal of Materials Chemistry, 2012, 22, 923-931.	6.7	63
52	Designing Efficient Localized Surface Plasmon Resonance-Based Sensing Platforms: Optimization of Sensor Response by Controlling the Edge Length of Gold Nanoprisms. Journal of Physical Chemistry C, 2012, 116, 20990-21000.	1.5	58
53	3D-Addressable Redox: Modifying Porous Carbon Electrodes with Ferrocenated 2 nm Gold Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 9283-9289.	1.5	11
54	Low-Temperature Synthesis of Magic-Sized CdSe Nanoclusters: Influence of Ligands on Nanocluster Growth and Photophysical Properties. Journal of Physical Chemistry C, 2012, 116, 4380-4389.	1.5	71

#	Article	IF	CITATIONS
55	Crystal-field analysis and Zeeman splittings of energy levels of Nd3+ (4 <i>f</i> 3) in GaN. Journal of Applied Physics, 2011, 110, .	1.1	9
56	Spectroscopic and Microscopic Investigation of Gold Nanoparticle Formation: Ligand and Temperature Effects on Rate and Particle Size. Journal of the American Chemical Society, 2011, 133, 8179-8190.	6.6	87
57	Spectroscopic analysis of Eu3+ in single-crystal hexagonal phase AlN. Journal of Applied Physics, 2011, 110, .	1.1	27
58	Fabrication and absorption intensity analyses of Er ₂ O ₃ nanoparticles suspended in polymethyl methacrylate. Journal of Applied Polymer Science, 2011, 122, 289-295.	1.3	8
59	Interfacial Ion Transfers between a Monolayer Phase of Cationic Au Nanoparticles and Contacting Organic Solvent. Journal of the American Chemical Society, 2010, 132, 2058-2063.	6.6	10
60	Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3. Journal of Applied Physics, 2010, 108, .	1.1	31
61	A comparison of methods for determining optical properties of thin samples. , 2010, 7562, .		2
62	Persistent Multilayer Electrode Adsorption of Polycationic Au Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 18384-18389.	1.5	9
63	Analyses of 4f11Energy Levels and Transition Intensities Between Stark Levels of Er3+in Y3Al5O12. Spectroscopy Letters, 2010, 43, 406-422.	0.5	26
64	Preparation and spectroscopic characterization of Nd3+:Y2O3 nanocrystals suspended in polymethyl methacrylate. Journal of Applied Physics, 2009, 105, .	1.1	14
65	Phonon effects on zero-phonon transitions between Stark levels in NaBi(WO4)2:Yb3+. Journal of Applied Physics, 2009, 105, .	1.1	11
66	Modeling optical spectra and Van Vleck paramagnetism in Er3+:YAlO3. Journal of Applied Physics, 2009, 105, .	1.1	17
67	Optical absorption and scattering of bovine cornea, lens and retina in the visible region. Lasers in Medical Science, 2009, 24, 839-847.	1.0	34
68	Gold Nanoparticles: Past, Present, and Future. Langmuir, 2009, 25, 13840-13851.	1.6	1,000
69	Ferrocenated Au Nanoparticle Monolayer Adsorption on Self-Assembled Monolayer-Coated Electrodes. Analytical Chemistry, 2009, 81, 6960-6965.	3.2	24
70	Electrospray Ionization Mass Spectrometry of Intrinsically Cationized Nanoparticles, [Au _{144/146} (SC ₁₁ H ₂₂ N(CH ₂ CH ₃) _{3Journal of the American Chemical Society, 2009, 131, 16266-16271.}	ub> «.s up>·	+ <b sup>) <sub< td=""></sub<>
71	Energy levels and symmetry assignments for Stark components of Ho3+(4f10) in yttrium gallium garnet (Y3Ga5O12). Journal of Applied Physics, 2009, 106, .	1.1	21
72	9-BBN Induced Synthesis of Nearly Monodisperse ω-Functionalized Alkylthiol Stabilized Gold	3.2	36

Nanoparticles. Chemistry of Materials, 2009, 21, 1167-1169.

#	Article	IF	CITATIONS
73	One-Step Synthesis of Phosphine-Stabilized Gold Nanoparticles Using the Mild Reducing Agent 9-BBN. Langmuir, 2009, 25, 13279-13283.	1.6	57
74	Asymmetrically Functionalized Gold Nanoparticles Organized in One-Dimensional Chains. Nano Letters, 2008, 8, 731-736.	4.5	132
75	pH-Controlled Assemblies of Polymeric Amine-Stabilized Gold Nanoparticles. Macromolecules, 2008, 41, 4347-4352.	2.2	67
76	Nonequilibrium population distribution in excited electronic states of Tb3+ in Y3Al5O12. Journal of Applied Physics, 2008, 103, .	1.1	3
77	Intensity analysis and crystal-field modeling of Ho3+ in KPb2Cl5 host. Journal of Applied Physics, 2008, 103, .	1.1	14
78	Versatile Solid Phase Synthesis of Gold Nanoparticle Dimers Using an Asymmetric Functionalization Approach. Journal of the American Chemical Society, 2007, 129, 5356-5357.	6.6	184
79	Polymer-Induced Synthesis of Stable Gold and Silver Nanoparticles and Subsequent Ligand Exchange in Water. Langmuir, 2007, 23, 11883-11889.	1.6	115
80	Optical properties of ocular tissues in the near infrared region. Lasers in Medical Science, 2007, 22, 46-52.	1.0	42
81	Ligand-field splitting of the energy levels of Nd3+ (4f3) in 2-hydroxyethyl methacrylate polymer (HEMA). Polymer International, 2006, 55, 1007-1012.	1.6	3
82	Spectroscopic analysis of Nd3+(4f3) absorption intensities in a plastic host (HEMA). Polymer International, 2005, 54, 412-417.	1.6	5
83	Optical scattering, absorption, and polarization of healthy and neovascularized human retinal tissues. Journal of Biomedical Optics, 2005, 10, 051501.	1.4	28
84	Optical transitions, absorption intensities, and intermanifold emission cross sections of Pr3+(4f2) in Ca5(PO4)3F crystal host. Journal of Applied Physics, 2004, 95, 5334-5339.	1.1	15
85	Optical characterization of bovine retinal tissues. Journal of Biomedical Optics, 2004, 9, 624.	1.4	21
86	Self-Assembled Stable Silver Nanoclusters and Nanonecklace Formation:Â Poly(methylhydrosiloxane)-Mediated One-Pot Route to Organosolsâ€. Macromolecules, 2004, 37, 5136-5139.	2.2	49
87	Synthesis, stabilization, and applications of nanoscopic siloxane–metal particle conjugates. Journal of Organometallic Chemistry, 2003, 686, 24-31.	0.8	25
88	Characterization of spectroscopic and laser properties of Pr3+ in Sr5(PO4)3F crystal. Journal of Applied Physics, 2002, 91, 911-915.	1.1	28
89	Surface-Ligand-Controlled Enhancement of Carrier Density in Plasmonic Tungsten Oxide Nanocrystals: Spectroscopic Observation of Trap-State Passivation <i>via</i> Multidentate Metal Phosphonate Bonding. Chemistry of Materials, 0, , .	3.2	8