
Fernando Alferez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2241181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Individual protective covers (IPCs) to prevent Asian citrus psyllid and Candidatus Liberibacter asiaticus from establishing in newly planted citrus trees. Crop Protection, 2022, 152, 105862.	2.1	8
2	Fingered Citron—A Fragrant Ornamental Fruit Crop for Florida. Edis, 2022, 2022, .	0.1	1
3	Effects of Glyphosate Application on Preharvest Fruit Drop and Yield in †Valencia' Citrus. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 897-900.	1.0	2
4	Interplay between Abscisic Acid and Gibberellins, as Related to Ethylene and Sugars, in Regulating Maturation of Non-Climacteric Fruit. International Journal of Molecular Sciences, 2021, 22, 669.	4.1	29
5	Biological traits of the predatory mirid <i>Macrolophus praeclarus</i> , a candidate biocontrol agent for the Neotropical region. Bulletin of Entomological Research, 2021, 111, 429-437.	1.0	10
6	Differential Transcriptomic Regulation in Sweet Orange Fruit (Citrus sinensis L. Osbeck) Following Dehydration and Rehydration Conditions Leading to Peel Damage. Frontiers in Plant Science, 2021, 12, 732821.	3.6	2
7	Individual Protective Covers (IPCs) for Young Tree Protection from the HLB Vector, the Asian Citrus Psyllid. Edis, 2021, 2021, .	0.1	0
8	Determining Seed Viability During Fruit Maturation to Improve Seed Production and Availability of New Citrus Rootstocks. Frontiers in Plant Science, 2021, 12, 777078.	3.6	4
9	Involvement of phospholipases and sucrose in carbon starvation-induced non-chilling peel pitting in citrus fruit. Postharvest Biology and Technology, 2020, 169, 111295.	6.0	6
10	Insights into the regulation of molecular mechanisms involved in energy shortage in detached citrus fruit. Scientific Reports, 2020, 10, 1109.	3.3	13
11	Phospholipase D (PLD) Response to Water Stress in Citrus Roots and Leaves. Agronomy, 2020, 10, 45.	3.0	4
12	Citrus Nursery Production Guide, Chapter 7: Seed and Budwood Production, Transport, and Conservation. Edis, 2020, 2019, 3.	0.1	1
13	Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants, 2019, 8, 499.	3.5	132
14	Lightâ€emitting Diode Blue Light Alters the Ability of <i>Penicillium digitatum</i> to Infect Citrus Fruits. Photochemistry and Photobiology, 2018, 94, 1003-1009.	2.5	10
15	Susceptibility to postharvest peel pitting in Citrus fruits as related to albedo thickness, water loss and phospholipase activity. Postharvest Biology and Technology, 2017, 123, 77-82.	6.0	25
16	Citrus Production Guide: Rootstock and Scion Selection. Edis, 2017, 2017, .	0.1	0
17	POSTHARVEST ETHYLENE TREATMENT REDUCES QUALITY LOSS OF STORED MATURE SWEET ORANGE 'NAVELATE'. Acta Horticulturae, 2015, , 1507-1513.	0.2	0
18	POSTHARVEST WATER STRESS LEADING TO PEEL DISORDERS IN CITRUS FRUIT INVOLVES REGULATION OF PHOSPHOLIPASES BY ABA, Acta Horticulturae, 2015, 1515-1519.	0.2	0

Fernando Alferez

#	Article	IF	CITATIONS
19	Effect of <scp>LED</scp> Blue Light on <i><scp>P</scp>enicillium digitatum</i> and <i><scp>P</scp>enicillium italicum</i> Strains. Photochemistry and Photobiology, 2015, 91, 1412-1421.	2.5	21
20	Influence of fruit maturity in the susceptibility of Navelina oranges to develop postharvest non-chilling peel pitting. Food Science and Technology International, 2014, 20, 183-191.	2.2	5
21	Postharvest ethylene conditioning as a tool to reduce quality loss of stored mature sweet oranges. Postharvest Biology and Technology, 2014, 94, 104-111.	6.0	23
22	A transcriptional approach to unravel the connection between phospholipases A2 and D and ABA signal in citrus under water stress. Plant Physiology and Biochemistry, 2014, 80, 23-32.	5.8	16
23	Interplay between ABA and phospholipases A2 and D in the response of citrus fruit to postharvest dehydration. Plant Physiology and Biochemistry, 2013, 70, 287-294.	5.8	26
24	Assessment of blue light treatments on citrus postharvest diseases. Postharvest Biology and Technology, 2013, 81, 81-88.	6.0	58
25	Modification of Carotenoid Levels by Abscission Agents and Expression of Carotenoid Biosynthetic Genes in †Valencia' Sweet Orange. Journal of Agricultural and Food Chemistry, 2013, 61, 3082-3089.	5.2	4
26	Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus) Tj ETQq0 0 0 2753-2767.) rgBT /Ov 4.8	erlock 10 Tf 48
27	Blue light alters infection by Penicillium digitatum in tangerines. Postharvest Biology and Technology, 2012, 63, 11-15.	6.0	43
28	Morphological and ultrastructural changes in peel of â€~Navelate' oranges in relation to variations in relative humidity during postharvest storage and development of peel pitting. Postharvest Biology and Technology, 2010, 56, 163-170.	6.0	26
29	Variation in water, osmotic and turgor potential in peel of †Marsh' grapefruit during development of postharvest peel pitting. Postharvest Biology and Technology, 2010, 56, 44-49.	6.0	32
30	Phospholipase A2 and postharvest peel pitting in citrus fruit. Postharvest Biology and Technology, 2008, 49, 69-76.	6.0	26
31	A citrus abscission agent induces anoxia- and senescence-related gene expression in Arabidopsis. Journal of Experimental Botany, 2007, 58, 2451-2462.	4.8	15
32	Physiological changes associated with senescence and abscission in mature citrus fruit induced by 5-chloro-3-methyl-4-nitro-1H-pyrazole and ethephon application. Physiologia Plantarum, 2006, 127, 66-73.	5.2	24
33	Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methyl-4-nitro-1H-pyrazole are mediated by lipid signalling. Plant, Cell and Environment, 2005, 28, 1436-1449.	5.7	33
34	A comparative study of the postharvest performance of an ABA-deficient mutant of oranges. Postharvest Biology and Technology, 2005, 37, 232-240.	6.0	31
35	A comparative study of the postharvest performance of an ABA-deficient mutant of oranges. Postharvest Biology and Technology, 2005, 37, 222-231.	6.0	48
36	Partial Defoliation Can Decrease Average Leaf Size but Has Little Effect on Orange Tree Growth, Fruit Yield and Juice Quality. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 2011-2015.	1.0	12

Fernando Alferez

#	Article	IF	CITATIONS
37	Low Relative Humidity at Harvest and Before Storage at High Humidity Influence the Severity of Postharvest Peel Pitting in Citrus. Journal of the American Society for Horticultural Science, 2005, 130, 225-231.	1.0	27
38	Postharvest peel pitting at non-chilling temperatures in grapefruit is promoted by changes from low to high relative humidity during storage. Postharvest Biology and Technology, 2004, 32, 79-87.	6.0	46
39	Differential Effects of 1-Methylcyclopropene on Citrus Leaf and Mature Fruit Abscission. Journal of the American Society for Horticultural Science, 2004, 129, 473-478.	1.0	33
40	Postharvest rind staining in Navel oranges is aggravated by changes in storage relative humidity: effect on respiration, ethylene production and water potential. Postharvest Biology and Technology, 2003, 28, 143-152.	6.0	64
41	Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. Journal of Experimental Botany, 2003, 54, 727-738.	4.8	191
42	Histological and Physiological Characterization of Rind Breakdown of 'Navelate' Sweet Orange. Annals of Botany, 2001, 88, 415-422.	2.9	55
43	2021–2022 Florida Citrus Production Guide: Rootstock and Scion Selection. Edis, 0, , .	0.1	0
44	2021–2022 Florida Citrus Production Guide: Canopy Management. Edis, 0, , .	0.1	2
45	2021–2022 Florida Citrus Production Guide: Citrus Under Protective Screen (CUPS) Production Systems. Edis, 0, , .	0.1	0
46	2021–2022 Florida Citrus Production Guide: Plant Growth Regulators. Edis, 0, , .	0.1	0
47	2020–2021 Florida Citrus Production Guide: Rootstock and Scion Selection. Edis, 0, , .	0.1	0
48	2020–2021 Florida Citrus Production Guide: Plant Growth Regulators. Edis, 0, , .	0.1	2
49	2020–2021 Florida Citrus Production Guide: Canopy Management. Edis, 0, , .	0.1	0