
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2241048/publications.pdf Version: 2024-02-01

Νιανιλλητι

#	Article	IF	CITATIONS
1	Recent Advances in Complex Hollow Electrocatalysts for Water Splitting. Advanced Functional Materials, 2022, 32, 2108681.	7.8	107
2	Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting. Advanced Science, 2022, 9, e2105135.	5.6	110
3	Self‣upported Transition Metalâ€Based Nanoarrays for Efficient Energy Storage. Chemical Record, 2022, 22, e202100294.	2.9	20
4	Interlayerâ€Expanded Titanate Hierarchical Hollow Spheres Embedded in Carbon Nanofibers for Enhanced Na Storage. Small, 2022, 18, e2107890.	5.2	8
5	Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Science Advances, 2022, 8, eabm5766.	4.7	150
6	Cations and anions regulation through hybrid ionic liquid electrolytes towards stable lithium metal anode. Chemical Engineering Journal, 2022, 439, 135780.	6.6	14
7	Formation of Superâ€Assembled TiO _{<i>x</i>} /Zn/Nâ€Doped Carbon Inverse Opal Towards Dendriteâ€Free Zn Anodes. Angewandte Chemie - International Edition, 2022, 61, e202115649.	7.2	76
8	Formation of Superâ€Assembled TiO _{<i>x</i>} /Zn/Nâ€Đoped Carbon Inverse Opal Towards Dendriteâ€Free Zn Anodes. Angewandte Chemie, 2022, 134, .	1.6	4
9	Surface and Interface Engineering Strategies for MoS ₂ Towards Electrochemical Hydrogen Evolution. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
10	Atomically Dispersed Cu in Zeolitic Imidazolate Framework Nanoflake Array for Dendriteâ€Free Zn Metal Anode. Small, 2022, 18, .	5.2	31
11	Quasi-metallic lithium encapsulated in the subnanopores of hard carbon for hybrid lithium–ion/lithium metal batteries. Chemical Engineering Journal, 2022, 450, 138049.	6.6	8
12	A flexible three-dimensional composite nanofiber enhanced quasi-solid electrolyte for high-performance lithium metal batteries. Inorganic Chemistry Frontiers, 2021, 8, 361-367.	3.0	55
13	Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 13388-13401.	5.2	43
14	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
15	Lotusâ€Root‣ike Carbon Fibers Embedded with Ni–Co Nanoparticles for Dendriteâ€Free Lithium Metal Anodes. Advanced Materials, 2021, 33, e2100608.	11.1	99
16	Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution. Rare Metals, 2021, 40, 2785-2792.	3.6	47
17	Polymer Zwitterion-Based Artificial Interphase Layers for Stable Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 57489-57496.	4.0	26
18	Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media. Science Bulletin, 2020, 65, 359-366.	4.3	45

NIAN-WU LI

#	Article	IF	CITATIONS
19	Recent progress of Ni–Fe layered double hydroxide and beyond towards electrochemical water splitting. Nanoscale Advances, 2020, 2, 5555-5566.	2.2	52
20	Studies of FeSe2 Cathode Materials for Mg–Li Hybrid Batteries. Energies, 2020, 13, 4375.	1.6	10
21	Advanced pillared designs for two-dimensional materials in electrochemical energy storage. Nanoscale Advances, 2020, 2, 5496-5503.	2.2	11
22	High-Performance Sodium Metal Batteries with Sodium–Bismuth Alloy Anode. ACS Applied Energy Materials, 2020, 3, 12607-12612.	2.5	25
23	Artificial Interphase Layers for Lithium Metal Anode. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	7
24	Formation of Co–Mn mixed oxide double-shelled hollow spheres as advanced electrodes for hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 25247-25253.	5.2	67
25	Motion recognition by a liquid filled tubular triboelectric nanogenerator. Nanoscale, 2019, 11, 495-503.	2.8	19
26	Oxygen Deficient LaMn _{0.75} Co _{0.25} O _{3â^'Î} Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc–Air Batteries. Inorganic Chemistry, 2019, 58, 8208-8214.	1.9	89
27	Na ₂ Ti ₃ O ₇ Nanotubes as Anode Materials for Sodiumâ€ion Batteries and Selfâ€powered Systems. ChemElectroChem, 2019, 6, 3085-3090.	1.7	19
28	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	7.2	287
29	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	1.6	52
30	Efficient Charging of Lithium–Sulfur Batteries by Triboelectric Nanogenerator Based on Pulse Current. Advanced Materials Technologies, 2019, 4, 1800326.	3.0	9
31	Triboelectric Nanogenerator-Enabled Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 802-810.	4.0	12
32	Hybridized Nanogenerators for Harvesting Vibrational Energy by Triboelectric–Piezoelectric–Electromagnetic Effects. Advanced Materials Technologies, 2018, 3, 1800019.	3.0	35
33	Lithium-Ion Batteries: Charged by Triboelectric Nanogenerators with Pulsed Output Based on the Enhanced Cycling Stability. ACS Applied Materials & Interfaces, 2018, 10, 8676-8684.	4.0	18
34	Triboelectricâ€Based Transparent Secret Code. Advanced Science, 2018, 5, 1700881.	5.6	27
35	A Selfâ€Powered Lantern Based on a Triboelectric–Photovoltaic Hybrid Nanogenerator. Advanced Materials Technologies, 2018, 3, 1700371.	3.0	26
36	Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Research, 2018, 11, 3771-3779.	5.8	115

#	Article	IF	CITATIONS
37	A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes. Angewandte Chemie, 2018, 130, 1521-1525.	1.6	82
38	High efficient detoxification of mustard gas surrogate based on nanofibrous fabric. Journal of Hazardous Materials, 2018, 347, 25-30.	6.5	13
39	Innentitelbild: A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes (Angew.) Tj ETQ	<u>0</u> q1 1 0.78 1.6	4314 rgBT /○ 2
40	Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy. Nano Research, 2018, 11, 2862-2871.	5.8	44
41	A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 1505-1509.	7.2	590
42	A Breathable and Screenâ€Printed Pressure Sensor Based on Nanofiber Membranes for Electronic Skins. Advanced Materials Technologies, 2018, 3, 1700241.	3.0	163
43	Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors. Electrochimica Acta, 2018, 281, 459-465.	2.6	36
44	A Dualâ€Salt Gel Polymer Electrolyte with 3D Crossâ€Linked Polymer Network for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2018, 5, 1800559.	5.6	204
45	Improved Triboelectric Nanogenerator Output Performance through Polymer Nanocomposites Filled with Core–shell-Structured Particles. ACS Applied Materials & Interfaces, 2018, 10, 25683-25688.	4.0	47
46	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444
47	Conductive graphite fiber as a stable host for zinc metal anodes. Electrochimica Acta, 2017, 244, 172-177.	2.6	175
48	Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. Small Methods, 2017, 1, 1700094.	4.6	50
49	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule, 2017, 1, 563-575.	11.7	329
50	Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator. ACS Nano, 2017, 11, 10439-10445.	7.3	163
51	Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. Advanced Materials, 2017, 29, 1703729.	11.1	381
52	Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes. Advanced Materials, 2017, 29, 1700389.	11.1	495
53	Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping. Advanced Science, 2017, 4, 1600400.	5.6	220
54	Synthesis of Sn Nanoparticles/Graphene Nanosheet Hybrid Electrode Material with Three-Dimensional Conducting Network for Magnesium Storage. Acta Chimica Sinica, 2017, 75, 206.	0.5	1

#	Article	IF	CITATIONS
55	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 2016, 138, 15825-15828.	6.6	399
56	An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials, 2016, 28, 1853-1858.	11.1	1,291
57	Three-dimensional sandwich-type graphene@microporous carbon architecture for lithium–sulfur batteries. RSC Advances, 2016, 6, 617-622.	1.7	40
58	Improving lithium–sulfur battery performance via a carbon-coating layer derived from the hydrothermal carbonization of glucose. RSC Advances, 2015, 5, 50983-50988.	1.7	15
59	Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 2015, 6, 8058.	5.8	1,305
60	Microwave-assisted synthesis of graphene–SnO2 nanocomposite for rechargeable lithium-ion batteries. Materials Letters, 2014, 115, 125-128.	1.3	15
61	Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 15889-15896.	5.2	189
62	Morphology-controlled synthesis of nanostructured zinc hydroxide fluoride via a microwave-assisted ionic liquid route. Solid State Sciences, 2014, 38, 97-102.	1.5	4
63	Rapid adsorption properties of flower-like BiOI nanoplates synthesized via a simple EG-assisted solvothermal process. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	27
64	Formation of Pt nanoparticles in mesoporous silica channels via direct low-temperature decomposition of H2PtCl6·6H2O. Materials Letters, 2013, 106, 193-196.	1.3	9
65	Macro–microporous carbon for supercapacitors derived from rape seed shell. Materials Letters, 2013, 105, 43-46.	1.3	13
66	Fabrication of Hierarchical Macroporous/Mesoporous Carbons via the Dual-Template Method and the Restriction Effect of Hard Template on Shrinkage of Mesoporous Polymers. Journal of Physical Chemistry C, 2013, 117, 8784-8792.	1.5	28
67	High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chemical Communications, 2012, 48, 4106.	2.2	315
68	Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Materials Letters, 2012, 75, 126-129.	1.3	31
69	Electrochemical capacitive behaviors of ordered mesoporous carbons with controllable pore sizes. Journal of Power Sources, 2012, 209, 243-250.	4.0	72
70	Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1482-1490.	0.9	25
71	An Easy and Green Route for the Fabrication of NiO Nanoparticles by Starch Template. Integrated Ferroelectrics, 2011, 127, 128-133.	0.3	5
72	Hydrothermal synthesis of graphene–ZnS quantum dot nanocomposites. Materials Letters, 2011, 65, 198-200.	1.3	59

#	Article	IF	CITATIONS
73	Preparation of Graphene-ZnS Nanocomposites via Hydrothermal Method Using Two Sulfide Sources. Chinese Journal of Chemistry, 2011, 29, 719-723.	2.6	5
74	Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. Journal of Solid State Chemistry, 2011, 184, 953-958.	1.4	246
75	Synthesis of Ordered Macroporous Co3O4 Microspheres via an Easy Melt Infiltration Route. Chemistry Letters, 2009, 38, 1050-1051.	0.7	5