A Harvey Millar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2240745/publications.pdf Version: 2024-02-01

Δ ΗΛΟΥΕΥ ΜΙΙΙΛΟ

#	Article	IF	CITATIONS
1	Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462, 315-322.	13.7	4,063
2	Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell, 2008, 133, 523-536.	13.5	2,229
3	Experimental Analysis of the Arabidopsis Mitochondrial Proteome Highlights Signaling and Regulatory Components, Provides Assessment of Targeting Prediction Programs, and Indicates Plant-Specific Mitochondrial Proteins Â[W]. Plant Cell, 2004, 16, 241-256.	3.1	550
4	Organization and Regulation of Mitochondrial Respiration in Plants. Annual Review of Plant Biology, 2011, 62, 79-104.	8.6	537
5	The impact of oxidative stress on Arabidopsis mitochondria. Plant Journal, 2002, 32, 891-904.	2.8	478
6	An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 2017, 27, 885-896.	2.4	464
7	Analysis of the Arabidopsis Mitochondrial Proteome. Plant Physiology, 2001, 127, 1711-1727.	2.3	431
8	Molecular Definition of the Ascorbate-Glutathione Cycle in Arabidopsis Mitochondria Reveals Dual Targeting of Antioxidant Defenses in Plants. Journal of Biological Chemistry, 2003, 278, 46869-46877.	1.6	408
9	SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Research, 2007, 35, D213-D218.	6.5	394
10	A Link between RNA Metabolism and Silencing Affecting Arabidopsis Development. Developmental Cell, 2008, 14, 854-866.	3.1	394
11	SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 2017, 45, D1064-D1074.	6.5	390
12	The Absence of ALTERNATIVE OXIDASE1a in Arabidopsis Results in Acute Sensitivity to Combined Light and Drought Stress Â. Plant Physiology, 2008, 147, 595-610.	2.3	357
13	The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiology, 2016, 171, 1551-1559.	2.3	354
14	Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells. Plant Cell, 2003, 15, 2140-2151.	3.1	345
15	Control of Ascorbate Synthesis by Respiration and Its Implications for Stress Responses. Plant Physiology, 2003, 133, 443-447.	2.3	328
16	Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 730-741.	0.5	313
17	Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Molecular Biology, 2005, 58, 193-212.	2.0	302
18	Genome-Wide Analysis of mRNA Decay Rates and Their Determinants in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 3418-3436.	3.1	296

#	Article	IF	CITATIONS
19	A Predicted Interactome for Arabidopsis. Plant Physiology, 2007, 145, 317-329.	2.3	285
20	Remodeled Respiration in <i>ndufs4</i> with Low Phosphorylation Efficiency Suppresses Arabidopsis Germination and Growth and Alters Control of Metabolism at Night Â. Plant Physiology, 2009, 151, 603-619.	2.3	281
21	SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Research, 2012, 41, D1185-D1191.	6.5	272
22	Salicylic Acid Is an Uncoupler and Inhibitor of Mitochondrial Electron Transport. Plant Physiology, 2004, 134, 492-501.	2.3	256
23	Organic acid activation of the alterNatlve oxidase of plant mitochondria. FEBS Letters, 1993, 329, 259-262.	1.3	254
24	The Pentatricopeptide Repeat Gene <i>OTP43</i> Is Required for <i>trans</i> -Splicing of the Mitochondrial <i>nad1</i> Intron 1 in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 3256-3265.	3.1	248
25	Differential Response of Gray Poplar Leaves and Roots Underpins Stress Adaptation during Hypoxia Â. Plant Physiology, 2009, 149, 461-473.	2.3	239
26	The Arabidopsis glutathione transferase gene family displays complex stress regulation and coâ€silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant Journal, 2009, 58, 53-68.	2.8	237
27	Mapping Metabolic and Transcript Temporal Switches during Germination in Rice Highlights Specific Transcription Factors and the Role of RNA Instability in the Germination Process Â. Plant Physiology, 2009, 149, 961-980.	2.3	236
28	Differential Impact of Environmental Stresses on the Pea Mitochondrial Proteome. Molecular and Cellular Proteomics, 2005, 4, 1122-1133.	2.5	231
29	Mitochondrial Malate Dehydrogenase Lowers Leaf Respiration and Alters Photorespiration and Plant Growth in Arabidopsis. Plant Physiology, 2010, 154, 1143-1157.	2.3	225
30	Protein Degradation Rate in <i>Arabidopsis thaliana</i> Leaf Growth and Development. Plant Cell, 2017, 29, 207-228.	3.1	224
31	Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Letters, 1996, 398, 155-158.	1.3	220
32	Divalent Metal Ions in Plant Mitochondria and Their Role in Interactions with Proteins and Oxidative Stress-Induced Damage to Respiratory Function. Plant Physiology, 2010, 152, 747-761.	2.3	211
33	Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10768-10773.	3.3	206
34	The role of mitochondrial respiration in salinity tolerance. Trends in Plant Science, 2011, 16, 614-623.	4.3	199
35	Towards an Analysis of the Rice Mitochondrial Proteome. Plant Physiology, 2003, 132, 230-242.	2.3	194
36	Molecular Distinction between Alternative Oxidase from Monocots and Dicots. Plant Physiology, 2002, 129, 949-953.	2.3	189

3

#	Article	IF	CITATIONS
37	The plant mitochondrial proteome. Trends in Plant Science, 2005, 10, 36-43.	4.3	188
38	A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. Journal of the American Society for Mass Spectrometry, 2002, 13, 792-803.	1.2	187
39	Genomic and Proteomic Analysis of Mitochondrial Carrier Proteins in Arabidopsis. Plant Physiology, 2003, 131, 443-453.	2.3	185
40	Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits. Plant Molecular Biology, 2004, 56, 77-90.	2.0	184
41	Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1604, 159-169.	0.5	180
42	Mechanisms of Photodamage and Protein Turnover in Photoinhibition. Trends in Plant Science, 2018, 23, 667-676.	4.3	178
43	Lipoic Acid-Dependent Oxidative Catabolism of α-Keto Acids in Mitochondria Provides Evidence for Branched-Chain Amino Acid Catabolism in Arabidopsis. Plant Physiology, 2004, 134, 838-848.	2.3	176
44	Analysis of the Arabidopsis Cytosolic Ribosome Proteome Provides Detailed Insights into Its Components and Their Post-translational Modification. Molecular and Cellular Proteomics, 2008, 7, 347-369.	2.5	175
45	Environmental Stress Causes Oxidative Damage to Plant Mitochondria Leading to Inhibition of Glycine Decarboxylase. Journal of Biological Chemistry, 2002, 277, 42663-42668.	1.6	172
46	Mitochondrial Biogenesis during Germination in Maize Embryos. Plant Physiology, 2001, 125, 662-672.	2.3	170
47	Novel Proteins, Putative Membrane Transporters, and an Integrated Metabolic Network Are Revealed by Quantitative Proteomic Analysis of Arabidopsis Cell Culture Peroxisomes Â. Plant Physiology, 2008, 148, 1809-1829.	2.3	169
48	The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant Journal, 2009, 58, 299-317.	2.8	164
49	TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 22, 3921-3934.	3.1	164
50	Developmental Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea. Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase. Plant Physiology, 2004, 135, 549-560.	2.3	160
51	The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. Annual Review of Plant Biology, 2019, 70, 119-151.	8.6	158
52	SUBAcon: a consensus algorithm for unifying the subcellular localization data of the <i>Arabidopsis</i> proteome. Bioinformatics, 2014, 30, 3356-3364.	1.8	156
53	Ordered Assembly of Mitochondria During Rice Germination Begins with Promitochondrial Structures Rich in Components of the Protein Import Apparatus. Plant Molecular Biology, 2006, 60, 201-223.	2.0	153
54	The seminal fluid proteome of the honeybee <i>Apis mellifera</i> . Proteomics, 2009, 9, 2085-2097.	1.3	152

#	Article	IF	CITATIONS
55	A Transcriptomic and Proteomic Characterization of the Arabidopsis Mitochondrial Protein Import Apparatus and Its Response to Mitochondrial Dysfunction. Plant Physiology, 2004, 134, 777-789.	2.3	148
56	The pentatricopeptide repeat gene <i>OTP51</i> with two LAGLIDADG motifs is required for the <i>cis</i> â€splicing of plastid <i>ycf3</i> intron‣2 in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 157-168.	2.8	148
57	Recent surprises in protein targeting to mitochondria and plastids. Current Opinion in Plant Biology, 2006, 9, 610-615.	3.5	145
58	Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. Plant Methods, 2005, 1, 11.	1.9	144
59	Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. Journal of Proteomics, 2009, 72, 367-378.	1.2	142
60	Defining Core Metabolic and Transcriptomic Responses to Oxygen Availability in Rice Embryos and Young Seedlings Â. Plant Physiology, 2009, 151, 306-322.	2.3	141
61	Succinate dehydrogenase: the complex roles of a simple enzyme. Current Opinion in Plant Biology, 2013, 16, 344-349.	3.5	136
62	Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the <scp>GABA</scp> shunt under salt stress. New Phytologist, 2020, 225, 1166-1180.	3.5	135
63	Phage-Type RNA Polymerase RPOTmp Performs Gene-Specific Transcription in Mitochondria of Arabidopsis thaliana Â. Plant Cell, 2009, 21, 2762-2779.	3.1	134
64	Analysis of Respiratory Chain Regulation in Roots of Soybean Seedlings1. Plant Physiology, 1998, 117, 1083-1093.	2.3	132
65	Differential Expression of the Multigene Family Encoding the Soybean Mitochondrial Alternative Oxidase. Plant Physiology, 1997, 114, 455-466.	2.3	130
66	Mitochondrial Composition, Function and Stress Response in Plants ^F . Journal of Integrative Plant Biology, 2012, 54, 887-906.	4.1	129
67	NAD Malic Enzyme and the Control of Carbohydrate Metabolism in Potato Tubers. Plant Physiology, 2001, 126, 1139-1149.	2.3	127
68	Experimental Analysis of the Rice Mitochondrial Proteome, Its Biogenesis, and Heterogeneity Â. Plant Physiology, 2009, 149, 719-734.	2.3	127
69	A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Letters, 2004, 557, 109-114.	1.3	126
70	Cyclotides Associate with Leaf Vasculature and Are the Products of a Novel Precursor in Petunia (Solanaceae). Journal of Biological Chemistry, 2012, 287, 27033-27046.	1.6	126
71	Differential Molecular Responses of Rice and Wheat Coleoptiles to Anoxia Reveal Novel Metabolic Adaptations in Amino Acid Metabolism for Tissue Tolerance Â. Plant Physiology, 2011, 156, 1706-1724.	2.3	124
72	Nucleotide and RNA Metabolism Prime Translational Initiation in the Earliest Events of Mitochondrial Biogenesis during Arabidopsis Germination Â. Plant Physiology, 2012, 158, 1610-1627.	2.3	124

#	Article	IF	CITATIONS
73	Combining Experimental and Predicted Datasets for Determination of the Subcellular Location of Proteins in Arabidopsis. Plant Physiology, 2005, 139, 598-609.	2.3	120
74	Cytochrome and Alternative Respiratory Pathways Compete for Electrons in the Presence of Pyruvate in Soybean Mitochondria. Archives of Biochemistry and Biophysics, 1995, 318, 394-400.	1.4	119
75	Refining the Definition of Plant Mitochondrial Presequences through Analysis of Sorting Signals, N-Terminal Modifications, and Cleavage Motifs Â. Plant Physiology, 2009, 150, 1272-1285.	2.3	119
76	Proteins with High Turnover Rate in Barley Leaves Estimated by Proteome Analysis Combined with in Planta Isotope Labeling Â. Plant Physiology, 2014, 166, 91-108.	2.3	119
77	Proteomic Analysis of Glutathione S-Transferases of Arabidopsis thaliana Reveals Differential Salicylic Acid-Induced Expression of the Plant-Specific Phi and Tau Classes. Plant Molecular Biology, 2004, 54, 205-219.	2.0	116
78	Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera. Genome Biology, 2009, 10, R67.	13.9	116
79	The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1 FO ATP synthase. FEBS Letters, 2003, 540, 201-205.	1.3	114
80	Analysis of the <i>Arabidopsis</i> Cytosolic Proteome Highlights Subcellular Partitioning of Central Plant Metabolism. Journal of Proteome Research, 2011, 10, 1571-1582.	1.8	113
81	Specificity of the Organic Acid Activation of Alternative Oxidase in Plant Mitochondria. Plant Physiology, 1996, 111, 613-618.	2.3	109
82	The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinformatics, 2010, 11, 376.	1.2	109
83	Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant, Cell and Environment, 2008, 31, 1156-1169.	2.8	107
84	Does anoxia tolerance involve altering the energy currency towards PPi?. Trends in Plant Science, 2008, 13, 221-227.	4.3	107
85	Wheat Mitochondrial Proteomes Provide New Links between Antioxidant Defense and Plant Salinity Tolerance. Journal of Proteome Research, 2010, 9, 6595-6604.	1.8	107
86	Core principles which explain variation in respiration across biological scales. New Phytologist, 2019, 222, 670-686.	3.5	107
87	Heterogeneity of the Mitochondrial Proteome for Photosynthetic and Non-photosynthetic Arabidopsis Metabolism. Molecular and Cellular Proteomics, 2008, 7, 1297-1316.	2.5	104
88	The cytotoxic lipid peroxidation product, 4-hydroxy-2-nonenal, specifically inhibits decarboxylating dehydrogenases in the matrix of plant mitochondria. FEBS Letters, 2000, 481, 117-121.	1.3	103
89	TECHNICAL ADVANCE: Freeâ€flow electrophoresis for purification of plant mitochondria by surface charge. Plant Journal, 2007, 52, 583-594.	2.8	102
90	Insights into the Composition and Assembly of the Membrane Arm of Plant Complex I through Analysis of Subcomplexes in Arabidopsis Mutant Lines. Journal of Biological Chemistry, 2011, 286, 26081-26092.	1.6	100

#	Article	IF	CITATIONS
91	The biological roles of glutaredoxins. Biochemical Journal, 2012, 446, 333-348.	1.7	100
92	Revolutionizing agriculture with synthetic biology. Nature Plants, 2019, 5, 1207-1210.	4.7	100
93	Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Molecular Biology, 2006, 63, 97-108.	2.0	98
94	Complex I Dysfunction Redirects Cellular and Mitochondrial Metabolism in Arabidopsis Â. Plant Physiology, 2008, 148, 1324-1341.	2.3	98
95	Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in <i>Arabidopsis thaliana</i> . FEBS Letters, 2008, 582, 3073-3079.	1.3	97
96	Regulation of the Alternative Oxidase in Plants and Fungi Functional Plant Biology, 1995, 22, 497.	1.1	95
97	Exploring the Function-Location Nexus: Using Multiple Lines of Evidence in Defining the Subcellular Location of Plant Proteins. Plant Cell, 2009, 21, 1625-1631.	3.1	95
98	A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23345-23356.	3.3	95
99	MASCP Gator: An Aggregation Portal for the Visualization of Arabidopsis Proteomics Data. Plant Physiology, 2011, 155, 259-270.	2.3	94
100	Diurnal Changes in Mitochondrial Function Reveal Daily Optimization of Light and Dark Respiratory Metabolism in Arabidopsis. Molecular and Cellular Proteomics, 2010, 9, 2125-2139.	2.5	92
101	What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. Plant, Cell and Environment, 2014, 37, 2260-2277.	2.8	92
102	Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. Journal of Experimental Botany, 2003, 55, 1-10.	2.4	91
103	Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis Â. Plant Physiology, 2011, 157, 1093-1113.	2.3	90
104	Regulation of Alternative Oxidase Activity by Pyruvate in Soybean Mitochondria. Plant Physiology, 1994, 106, 1421-1427.	2.3	89
105	Protein turnover in plant biology. Nature Plants, 2015, 1, 15017.	4.7	88
106	Proteins within the seminal fluid are crucial to keep sperm viable in the honeybee Apis mellifera. Journal of Insect Physiology, 2011, 57, 409-414.	0.9	86
107	Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome. Frontiers in Plant Science, 2013, 4, 4.	1.7	86
108	Peptide Macrocyclization by a Bifunctional Endoprotease. Chemistry and Biology, 2015, 22, 571-582.	6.2	86

#	Article	IF	CITATIONS
109	Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss. Plant Cell, 2019, 31, 297-314.	3.1	86
110	Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases. Plant Physiology, 2016, 171, 2150-2165.	2.3	85
111	Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in <scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 429-441.	2.8	84
112	Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase. Plant Physiology, 2017, 173, 2029-2040.	2.3	84
113	<scp>MSL</scp> 1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant Journal, 2016, 88, 809-825.	2.8	82
114	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	2.9	82
115	The alternative oxidase is encoded in a multigene family in soybean. Planta, 1996, 198, 197-201.	1.6	80
116	Protein Synthesis by Rice Coleoptiles During Prolonged Anoxia: Implications for Glycolysis, Growth and Energy Utilization. Annals of Botany, 2005, 96, 703-715.	1.4	80
117	Resolving and Identifying Protein Components of Plant Mitochondrial Respiratory Complexes Using Three Dimensions of Gel Electrophoresis. Journal of Proteome Research, 2008, 7, 786-794.	1.8	80
118	Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation. Plant Cell, 2020, 32, 666-682.	3.1	80
119	Response of mitochondria to light intensity in the leaves of sun and shade species. Plant, Cell and Environment, 2005, 28, 760-771.	2.8	79
120	Oxygen Initiation of Respiration and Mitochondrial Biogenesis in Rice. Journal of Biological Chemistry, 2007, 282, 15619-15631.	1.6	79
121	A survey of the <i>Arabidopsis thaliana</i> mitochondrial phosphoproteome. Proteomics, 2009, 9, 4229-4240.	1.3	78
122	The Cytotoxic Lipid Peroxidation Product 4-Hydroxy-2-nonenal Covalently Modifies a Selective Range of Proteins Linked to Respiratory Function in Plant Mitochondria. Journal of Biological Chemistry, 2007, 282, 37436-37447.	1.6	76
123	Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply. Plant Physiology, 2017, 174, 2261-2273.	2.3	76
124	Mitophagy: A Mechanism for Plant Growth and Survival. Trends in Plant Science, 2018, 23, 434-450.	4.3	76
125	Resource: Mapping the <i>Triticum aestivum</i> proteome. Plant Journal, 2017, 89, 601-616.	2.8	74
126	A tomato alternative oxidase protein with altered regulatory properties. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1606, 153-162.	0.5	73

#	Article	IF	CITATIONS
127	Connecting salt stress signalling pathways with salinityâ€induced changes in mitochondrial metabolic processes in <scp>C</scp> 3 plants. Plant, Cell and Environment, 2017, 40, 2875-2905.	2.8	72
128	Changes in the Mitochondrial Proteome during the Anoxia to Air Transition in Rice Focus around Cytochrome-containing Respiratory Complexes. Journal of Biological Chemistry, 2004, 279, 39471-39478.	1.6	71
129	Matrix-assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging. Plant Methods, 2011, 7, 21.	1.9	68
130	Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants. Frontiers in Plant Science, 2013, 4, 214.	1.7	68
131	Analysis of the Rice Mitochondrial Carrier Family Reveals Anaerobic Accumulation of a Basic Amino Acid Carrier Involved in Arginine Metabolism during Seed Germination Â. Plant Physiology, 2010, 154, 691-704.	2.3	67
132	Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance. Plant Journal, 2016, 88, 542-558.	2.8	66
133	Differential Expression of Alternative Oxidase Genes in Soybean Cotyledons during Postgerminative Development. Plant Physiology, 1998, 118, 675-682.	2.3	65
134	Investigating the Role of Respiration in Plant Salinity Tolerance by Analyzing Mitochondrial Proteomes from Wheat and a Salinity-Tolerant Amphiploid (Wheat × <i>Lophopyrum elongatum</i>). Journal of Proteome Research, 2013, 12, 4807-4829.	1.8	65
135	Sensitivity of plant mitochondrial terminal oxidases to the lipid peroxidation product 4-hydroxy-2-nonenal (HNE). Biochemical Journal, 2005, 387, 865-870.	1.7	64
136	Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria. FEBS Letters, 2001, 508, 272-276.	1.3	63
137	The <i>Arabidopsis thaliana</i> 2â€D gel mitochondrial proteome: Refining the value of reference maps for assessing protein abundance, contaminants and postâ€translational modifications. Proteomics, 2011, 11, 1720-1733.	1.3	63
138	Alternative solutions to radical problems. Trends in Plant Science, 1997, 2, 288-290.	4.3	62
139	Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis) Tj ETQq1 1 0	.784314 rg 1.6	gBT /Overlock 62
140	Degradation Rate of Mitochondrial Proteins in <i>Arabidopsis thaliana</i> Cells. Journal of Proteome Research, 2013, 12, 3449-3459.	1.8	61
141	Analysis of the Soluble ATP-Binding Proteome of Plant Mitochondria Identifies New Proteins and Nucleotide Triphosphate Interactions within the Matrix. Journal of Proteome Research, 2006, 5, 3459-3469.	1.8	60
142	AMPDB: the Arabidopsis Mitochondrial Protein Database. Nucleic Acids Research, 2004, 33, D605-D610.	6.5	59
143	Mitochondrial acyl carrier proteins in Arabidopsis thaliana are predominantly soluble matrix proteins and none can be confirmed as subunits of respiratory Complex I. Plant Molecular Biology, 2007, 64, 319-327.	2.0	59
144	Sperm and seminal fluid proteomes of the field cricket <i><scp>T</scp>eleogryllus oceanicus</i> : identification of novel proteins transferred to females at mating. Insect Molecular Biology, 2013, 22, 115-130.	1.0	57

#	Article	IF	CITATIONS
145	Mitochondrial Defects Confer Tolerance against Cellulose Deficiency. Plant Cell, 2016, 28, 2276-2290.	3.1	57
146	Proteomic identification of divalent metal cation binding proteins in plant mitochondria. FEBS Letters, 2003, 537, 96-100.	1.3	56
147	Determining Degradation and Synthesis Rates of Arabidopsis Proteins Using the Kinetics of Progressive 15N Labeling of Two-dimensional Gel-separated Protein Spots. Molecular and Cellular Proteomics, 2012, 11, M111.010025.	2.5	56
148	Analysis of the Arabidopsis Mitochondrial Proteome. Plant Physiology, 2001, 127, 1711-1727.	2.3	55
149	Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis. Plant Physiology, 2016, 171, 849-63.	2.3	55
150	Microaerobic respiration and oxidative phosphorylation by soybean nodule mitochondria: implications for nitrogen fixation. Plant, Cell and Environment, 1995, 18, 715-726.	2.8	54
151	Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato. Biochemical Journal, 1999, 343, 327-334.	1.7	54
152	Mitochondrial Biogenesis and Function in Arabidopsis ^{â€} . The Arabidopsis Book, 2008, 6, e0111.	0.5	54
153	Predicting dark respiration rates of wheat leaves from hyperspectral reflectance. Plant, Cell and Environment, 2019, 42, 2133-2150.	2.8	54
154	Quantitative analysis of protein turnover in plants. Proteomics, 2014, 14, 579-592.	1.3	53
155	Clutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis. Plant Physiology, 2016, 170, 1284-1299.	2.3	53
156	Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis. Plant Journal, 2017, 89, 458-471.	2.8	53
157	Mitochondrial complex <scp>II</scp> of plants: subunit composition, assembly, and function in respiration and signaling. Plant Journal, 2019, 98, 405-417.	2.8	52
158	Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant Journal, 2002, 30, 11-21.	2.8	51
159	Identification of intra―and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics, 2007, 7, 4158-4170.	1.3	51
160	Combining proteomics of root and shoot mitochondria and transcript analysis to define constitutive and variable components in plant mitochondria. Phytochemistry, 2011, 72, 1092-1108.	1.4	51
161	Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL). Plant and Cell Physiology, 2016, 57, e9-e9. 	1.5	51
162	Selected Reaction Monitoring to Determine Protein Abundance in Arabidopsis Using the Arabidopsis Proteotypic Predictor. Plant Physiology, 2014, 164, 525-536.	2.3	48

#	Article	IF	CITATIONS
163	Systems biology for crop improvement. Plant Genome, 2021, 14, e20098.	1.6	48
164	Environmental stresses inhibit and stimulate different protein import pathways in plant mitochondria. FEBS Letters, 2003, 547, 125-130.	1.3	47
165	Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato. Biochemical Journal, 1999, 343, 327.	1.7	46
166	Chapter 3 Isolation and subfractionation of mitochondria from plants. Methods in Cell Biology, 2001, 65, 53-74.	0.5	46
167	Isolation and Subfractionation of Mitochondria from Plants. Methods in Cell Biology, 2007, 80, 65-90.	0.5	46
168	The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration. Plant Methods, 2017, 13, 16.	1.9	46
169	Maintenance of Growth Rate at Low Temperature in Rice and Wheat Cultivars with a High Degree of Respiratory Homeostasis is Associated with a High Efficiency of Respiratory ATP Production. Plant and Cell Physiology, 2004, 45, 1015-1022.	1.5	45
170	A Signaling-Regulated, Short-Chain Dehydrogenase of <i>Stagonospora nodorum</i> Regulates Asexual Development. Eukaryotic Cell, 2008, 7, 1916-1929.	3.4	45
171	Integrated plant proteomics — putting the green genomes to work. Functional Plant Biology, 2003, 30, 471.	1.1	44
172	Subcomplexes of Ancestral Respiratory Complex I Subunits Rapidly Turn Over in Vivo as Productive Assembly Intermediates in Arabidopsis*. Journal of Biological Chemistry, 2013, 288, 5707-5717.	1.6	44
173	Proteomics in evolutionary ecology. Journal of Proteomics, 2016, 135, 4-11.	1.2	44
174	Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato. Biochemical Journal, 1998, 334, 571-576.	1.7	43
175	Mitochondrial protein expression in tomato fruit during on-vine ripening and cold storage. Functional Plant Biology, 2002, 29, 827.	1.1	43
176	The N-terminal Cleavable Extension of Plant Carrier Proteins is Responsible for Efficient Insertion into the Inner Mitochondrial Membrane. Journal of Molecular Biology, 2005, 351, 16-25.	2.0	43
177	A critique of the use of inhibitors to estimate partitioning of electrons between mitochondrial respiratory pathways in plants. Physiologia Plantarum, 1995, 95, 523-532.	2.6	42
178	The C-terminal Region of TIM17 Links the Outer and Inner Mitochondrial Membranes in Arabidopsis and Is Essential for Protein Import. Journal of Biological Chemistry, 2005, 280, 16476-16483.	1.6	42
179	Vaccine-induced human antibodies to PspA augment complement C3 deposition on Streptococcus pneumoniae. Microbial Pathogenesis, 2008, 44, 204-214.	1.3	42
180	Long-Term Survival of High Quality Sperm: Insights into the Sperm Proteome of the Honeybee <i>Apis mellifera</i> . Journal of Proteome Research, 2013, 12, 5180-5188.	1.8	42

#	Article	IF	CITATIONS
181	Multiple marker abundance profiling: combining selected reaction monitoring and dataâ€dependent acquisition for rapid estimation of organelle abundance in subcellular samples. Plant Journal, 2017, 92, 1202-1217.	2.8	42
182	Components of Mitochondrial Oxidative Phosphorylation Vary in Abundance Following Exposure to Cold and Chemical Stresses. Journal of Proteome Research, 2012, 11, 3860-3879.	1.8	41
183	Mitochondrial Pyruvate Dehydrogenase Contributes to Auxin-Regulated Organ Development. Plant Physiology, 2019, 180, 896-909.	2.3	41
184	The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
185	Functional and composition differences between mitochondrial complex II in Arabidopsis and rice are correlated with the complex genetic history of the enzyme. Plant Molecular Biology, 2010, 72, 331-342.	2.0	40
186	Stored sperm differs from ejaculated sperm by proteome alterations associated with energy metabolism in the honeybee <i>Apis mellifera</i> . Molecular Ecology, 2011, 20, 2643-2654.	2.0	40
187	Loss of Lon1 in Arabidopsis Changes the Mitochondrial Proteome Leading to Altered Metabolite Profiles and Growth Retardation without an Accumulation of Oxidative Damage Â. Plant Physiology, 2012, 160, 1187-1203.	2.3	40
188	Cold sensitivity of mitochondrial ATP synthase restricts oxidative phosphorylation in <i>Arabidopsis thaliana</i> . New Phytologist, 2019, 221, 1776-1788.	3.5	40
189	Proteomics of phosphate use and deprivation in plants. Proteomics, 2013, 13, 609-623.	1.3	39
190	The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. Plant Cell, 2021, 33, 2776-2793.	3.1	39
191	Zinc-dependent intermembrane space proteins stimulate import of carrier proteins into plant mitochondria. Plant Journal, 2002, 30, 555-566.	2.8	38
192	Seminal fluid proteins differ in abundance between genetic lineages of honeybees. Journal of Proteomics, 2012, 75, 5646-5653.	1.2	38
193	Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen <i>Nosema apis</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20151785.	1.2	38
194	The versatility of plant organic acid metabolism in leaves is underpinned by mitochondrial malate–citrate exchange. Plant Cell, 2021, 33, 3700-3720.	3.1	37
195	Dual Intracellular Localization and Targeting of Aminoimidazole Ribonucleotide Synthetase in Cowpea. Plant Physiology, 2003, 131, 1033-1041.	2.3	36
196	Untangling multi-gene families in plants by integrating proteomics into functional genomics. Phytochemistry, 2004, 65, 1517-1530.	1.4	36
197	Mitochondrial Proteome Heterogeneity between Tissues from the Vegetative and Reproductive Stages of <i>Arabidopsis thaliana</i> Development. Journal of Proteome Research, 2012, 11, 3326-3343.	1.8	36
198	Responses of the Mitochondrial Respiratory System to Low Temperature in Plants. Critical Reviews in Plant Sciences, 2017, 36, 217-240.	2.7	36

#	Article	IF	CITATIONS
199	Expression and kinetics of the mitochondrial alternative oxidase in nitrogen-fixing nodules of soybean roots. Plant, Cell and Environment, 1997, 20, 1273-1282.	2.8	35
200	INTERMEDIATE CLEAVAGE PEPTIDASE55 Modifies Enzyme Amino Termini and Alters Protein Stability in Arabidopsis Mitochondria. Plant Physiology, 2015, 168, 415-427.	2.3	34
201	The rice mitochondria proteome and its response during development and to the environment. Frontiers in Plant Science, 2013, 4, 16.	1.7	33
202	Multiplex microâ€respiratory measurements of <scp>A</scp> rabidopsis tissues. New Phytologist, 2013, 200, 922-932.	3.5	33
203	The N-terminal Extension of Plant Mitochondrial Carrier Proteins is Removed by Two-step Processing: The First Cleavage is by the Mitochondrial Processing Peptidase. Journal of Molecular Biology, 2004, 344, 443-454.	2.0	32
204	Assessment of Respiration in Isolated Plant Mitochondria Using Clark-Type Electrodes. Methods in Molecular Biology, 2015, 1305, 165-185.	0.4	32
205	The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints. Trends in Plant Science, 2016, 21, 662-676.	4.3	32
206	Tissue-Specific Transcriptomics in the Field Cricket <i>Teleogryllus oceanicus</i> . G3: Genes, Genomes, Genetics, 2013, 3, 225-230.	0.8	30
207	Ontogenetic changes in seminal fluid gene expression and the protein composition of cricket seminal fluid. Evolution & Development, 2014, 16, 101-109.	1.1	28
208	Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. Molecular Plant, 2016, 9, 696-710.	3.9	28
209	Plant Mitochondrial Proteomics. Methods in Molecular Biology, 2014, 1072, 499-525.	0.4	28
210	Consequences of Nosema apis infection for male honey bees and their fertility. Scientific Reports, 2015, 5, 10565.	1.6	27
211	Analysis of the sodium chlorideâ€dependent respiratory kinetics of wheat mitochondria reveals differential effects on phosphorylating and nonâ€phosphorylating electron transport pathways. Plant, Cell and Environment, 2016, 39, 823-833.	2.8	27
212	Location, location, location: surveying the intracellular real estate through proteomics in plants. Functional Plant Biology, 2004, 31, 563.	1.1	26
213	Activity Assay for Plant Mitochondrial Enzymes. Methods in Molecular Biology, 2015, 1305, 139-149.	0.4	26
214	Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves. BMC Plant Biology, 2017, 17, 4.	1.6	26
215	Mitochondrial CLPP2 Assists Coordination and Homeostasis of Respiratory Complexes. Plant Physiology, 2020, 184, 148-164.	2.3	26
216	The composition and turnover of the <i>Arabidopsis thaliana</i> 80S cytosolic ribosome. Biochemical Journal, 2020, 477, 3019-3032.	1.7	26

#	Article	IF	CITATIONS
217	Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiology, 2022, 188, 1521-1536.	2.3	26
218	The metabolic acclimation of <i>Arabidopsis thaliana</i> to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism. Plant, Cell and Environment, 2014, 37, 684-695.	2.8	25
219	Impact of oxidative stress on the function, abundance, and turnover of the Arabidopsis 80S cytosolic ribosome. Plant Journal, 2020, 103, 128-139.	2.8	25
220	Isolation and Subfractionation of Plant Mitochondria for Proteomic Analysis. , 2007, 355, 49-62.		24
221	Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum. Mycological Research, 2009, 113, 523-531.	2.5	24
222	Infections with the Sexually Transmitted Pathogen <i>Nosema apis</i> Trigger an Immune Response in the Seminal Fluid of Honey Bees (<i>Apis mellifera</i>). Journal of Proteome Research, 2017, 16, 319-334.	1.8	24
223	Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s. Biochemical Journal, 2020, 477, 2055-2069.	1.7	24
224	An International Bioinformatics Infrastructure to Underpin the <i>Arabidopsis</i> Community. Plant Cell, 2010, 22, 2530-2536.	3.1	23
225	Accumulation of Newly Synthesized F1 in Vivo in Arabidopsis Mitochondria Provides Evidence for Modular Assembly of the Plant F1Fo ATP Synthase. Journal of Biological Chemistry, 2012, 287, 25749-25757.	1.6	23
226	Application of selected reaction monitoring mass spectrometry to field-grown crop plants to allow dissection of the molecular mechanisms of abiotic stress tolerance. Frontiers in Plant Science, 2013, 4, 20.	1.7	22
227	Online Oxygen Kinetic Isotope Effects Using Membrane Inlet Mass Spectrometry Can Differentiate between Oxidases for Mechanistic Studies and Calculation of Their Contributions to Oxygen Consumption in Whole Tissues. Analytical Chemistry, 2014, 86, 5171-5178.	3.2	21
228	Induction of alternative oxidase by excess copper in sycamore cell suspensions. Plant Physiology and Biochemistry, 1999, 37, 131-137.	2.8	20
229	Subcellular proteomics—where cell biology meets protein chemistry. Frontiers in Plant Science, 2014, 5, 55.	1.7	20
230	Enzymes as Parts in Need of Replacement – and How to Extend Their Working Life. Trends in Plant Science, 2020, 25, 661-669.	4.3	20
231	Metabolic evidence for distinct pyruvate pools inside plant mitochondria. Nature Plants, 2022, 8, 694-705.	4.7	20
232	Characterization of the dihydrolipoamide acetyltransferase of the mitochondrial pyruvate dehydrogenase complex from potato and comparisons with similar enzymes in diverse plant species. FEBS Journal, 1999, 264, 973-981.	0.2	19
233	Leaf trait variation is similar among genotypes of <i>Eucalyptus camaldulensis</i> from differing climates and arises in plastic responses to the seasons rather than water availability. New Phytologist, 2020, 227, 780-793.	3.5	19
234	Quantifying spore viability of the honey bee pathogen <i>Nosema apis</i> using flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 454-462.	1.1	18

#	Article	IF	CITATIONS
235	Calculation of the oxygen isotope discrimination factor for studying plant respiration. Functional Plant Biology, 1999, 26, 773.	1.1	18
236	An Assembly Factor Promotes Assembly of Flavinated SDH1 into the Succinate Dehydrogenase Complex. Plant Physiology, 2018, 177, 1439-1452.	2.3	17
237	Rapid delivery systems for future food security. Nature Biotechnology, 2021, 39, 1179-1181.	9.4	17
238	How is auxin linked with cellular energy pathways to promote growth?. New Phytologist, 2022, 233, 2397-2404.	3.5	17
239	Desensitization of GSTF8 Induction by a Prior Chemical Treatment Is Long Lasting and Operates in a Tissue-Dependent Manner. Plant Physiology, 2006, 142, 245-253.	2.3	16
240	Using the SUBcellular database for Arabidopsis proteins to localize the Deg protease family. Frontiers in Plant Science, 2014, 5, 396.	1.7	16
241	Arabidopsis Organelle Isolation and Characterization. Methods in Molecular Biology, 2014, 1062, 551-572.	0.4	16
242	Temporal development of the barley leaf metabolic response to P _i limitation. Plant, Cell and Environment, 2017, 40, 645-657.	2.8	16
243	Isolation of Mitochondria from Plant Cell Culture. Methods in Molecular Biology, 2008, 425, 163-169.	0.4	15
244	Early Events in Plastid Protein Degradation in <i>stay-greenArabidopsis</i> Reveal Differential Regulation beyond the Retention of LHCII and Chlorophyll. Journal of Proteome Research, 2012, 11, 5443-5452.	1.8	15
245	Increased expression of <i>ANAC017</i> primes for accelerated senescence. Plant Physiology, 2021, 186, 2205-2221.	2.3	15
246	Respiratory gene expression in soybean cotyledons during post-germinative development. Plant Molecular Biology, 2003, 51, 745-755.	2.0	14
247	The plant mitochondrial proteome and the challenge of defining the posttranslational modifications responsible for signalling and stress effects on respiratory functions. Physiologia Plantarum, 2007, 129, 207-224.	2.6	14
248	Differential induction of mitochondrial machinery by light intensity correlates with changes in respiratory metabolism and photorespiration in rice leaves. New Phytologist, 2013, 198, 103-115.	3.5	14
249	Sulfur compounds: From plants to humans and their role in chronic disease prevention. Critical Reviews in Food Science and Nutrition, 2023, 63, 8616-8638.	5.4	14
250	What makes a mitochondrion?. Genome Biology, 2003, 4, 218.	13.9	13
251	STAR: an integrated solution to management and visualization of sequencing data. Bioinformatics, 2013, 29, 3204-3210.	1.8	13
252	Genetics, Transcriptional Profiles, and Catalytic Properties of the UDP-Arabinose Mutase Family from Barley. Biochemistry, 2016, 55, 322-334.	1.2	13

#	Article	IF	CITATIONS
253	Identification of a novel cAMP dependent protein kinase A phosphorylation site on the human cardiac calcium channel. Scientific Reports, 2017, 7, 15118.	1.6	13
254	Protein turnover rates in plant mitochondria. Mitochondrion, 2020, 53, 57-65.	1.6	13
255	Oxidative Stress and Plant Mitochondria. Methods in Molecular Biology, 2007, 372, 389-403.	0.4	13
256	Rubisco lysine acetylation occurs at very low stoichiometry in mature Arabidopsis leaves: implications for regulation of enzyme function. Biochemical Journal, 2020, 477, 3885-3896.	1.7	13
257	Increased Wheat Protein Content via Introgression of an HMW Glutenin Selectively Reshapes the Grain Proteome. Molecular and Cellular Proteomics, 2021, 20, 100097.	2.5	12
258	ModuleFinder and CoReg: alternative tools for linking gene expression modules with promoter sequences motifs to uncover gene regulation mechanisms in plants. Plant Methods, 2006, 2, 8.	1.9	11
259	The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. Plant Cell, 2017, 29, tpc.00899.2016.	3.1	11
260	Systematic Monitoring of Protein Complex Composition and Abundance by Blue-Native PAGE. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5221.	0.2	10
261	Opportunities for wheat proteomics to discover the biomarkers for respiration-dependent biomass production, stress tolerance and cytoplasmic male sterility. Journal of Proteomics, 2016, 143, 36-44.	1.2	10
262	CropPAL for discovering divergence in protein subcellular location in crops to support strategies for molecular crop breeding. Plant Journal, 2020, 104, 812-827.	2.8	10
263	Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types. Journal of Proteomics, 2022, 256, 104502.	1.2	10
264	Exposure of barley plants to low P i leads to rapid changes in root respiration that correlate with specific alterations in amino acid substrates. New Phytologist, 2015, 206, 696-708.	3.5	9
265	Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant, Cell and Environment, 2019, 42, 1987-2002.	2.8	9
266	Knockdown of Succinate Dehydrogenase Assembly Factor 2 Induces Reactive Oxygen Species–Mediated Auxin Hypersensitivity Causing pH-Dependent Root Elongation. Plant and Cell Physiology, 2021, 62, 1185-1198.	1.5	9
267	Loss of conserved mitochondrial CLPP and its functions lead to different phenotypes in plants and other organisms. Plant Signaling and Behavior, 2020, 15, 1831789.	1.2	8
268	The wheat secreted root proteome: Implications for phosphorus mobilisation and biotic interactions. Journal of Proteomics, 2022, 252, 104450.	1.2	8
269	Building the Powerhouse. Plant Signaling and Behavior, 2007, 2, 428-430.	1.2	7
270	Sequence diversity and conservation in factors influencing succinate dehydrogenase flavinylation. Plant Signaling and Behavior, 2013, 8, e22815.	1.2	7

#	Article	IF	CITATIONS
271	Plant Mitochondrial Proteomics. Methods in Molecular Biology, 2015, 1305, 83-106.	0.4	7
272	Mitochondrial Lon1 has a role in homeostasis of the mitochondrial ribosome and pentatricopeptide repeat proteins in plants. Plant Signaling and Behavior, 2017, 12, e1276686.	1.2	7
273	The Isolation of Plant Organelles and Structures in the Post-genomic Era. Methods in Molecular Biology, 2017, 1511, 1-11.	0.4	7
274	<i>In vivo</i> homopropargylglycine incorporation enables sampling, isolation and characterization of nascent proteins from <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 107, 1260-1276.	2.8	7
275	Arabidopsis Mitochondrial Proteomics. Methods in Molecular Biology, 2007, 372, 559-571.	0.4	7
276	Protein turnover in the developing <i>Triticum aestivum</i> grain. New Phytologist, 2022, 233, 1188-1201.	3.5	7
277	Defects in autophagy lead to selective in vivo changes in turnover of cytosolic and organelle proteins in Arabidopsis. Plant Cell, 2022, 34, 3936-3960.	3.1	7
278	Chromosomal clustering of nuclear genes encoding mitochondrial and chloroplast proteins in Arabidopsis. Trends in Genetics, 2006, 22, 589-593.	2.9	6
279	Pursuing the identification of O ₂ deprivation survival mechanisms in plants related to selective mRNA translation, hormone-independent cellular elongation and preparation for the arrival of oxygen. Plant Signaling and Behavior, 2011, 6, 1612-1615.	1.2	6
280	Temperature-dependent metabolic adaptation of Triticum aestivum seedlings to anoxia. Scientific Reports, 2018, 8, 6151.	1.6	6
281	Autophagy mutants show delayed chloroplast development during deâ€etiolation in carbon limiting conditions. Plant Journal, 2021, 108, 459-477.	2.8	6
282	Nitric Oxide Synthesis by Plants and its Potential Impact on Nitrogen and Respiratory Metabolism. Advances in Photosynthesis and Respiration, 2002, , 193-204.	1.0	6
283	Effect of N supply on the carbon economy of barley when accounting for plant size. Functional Plant Biology, 2020, 47, 368.	1.1	6
284	The mitochondrial <scp>LYR</scp> protein <scp>SDHAF1</scp> is required for succinate dehydrogenase activity in Arabidopsis. Plant Journal, 2022, 110, 499-512.	2.8	6
285	Enzymes degraded under high light maintain proteostasis by transcriptional regulation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121362119.	3.3	6
286	The Plant Mitochondrial Proteome. , 2007, , 226-246.		5
287	Micro-Respiratory Measurements in Plants. Methods in Molecular Biology, 2015, 1305, 187-196.	0.4	5
288	Assessing the Kinetics of Metabolite Uptake and Utilization by Isolated Using Selective Reaction Monitoring Mass Spectrometry (SRM-MS). Methods in Molecular Biology, 2022, 2363, 85-100.	0.4	5

#	Article	IF	CITATIONS
289	Day and night isotope labelling reveal metabolic pathway specific regulation of protein synthesis rates in Arabidopsis. Plant Journal, 2022, 109, 745-763.	2.8	5
290	Isolation of Mitochondria, Their Sub-Organellar Compartments, and Membranes. Methods in Molecular Biology, 2017, 1511, 83-96.	0.4	4
291	Proteomics for Autophagy Receptor and Cargo Identification in Plants. Journal of Proteome Research, 2021, 20, 129-138.	1.8	4
292	The Plant Mitochondrial Proteome Composition and Stress Response: Conservation and Divergence Between Monocots and Dicots. , 2011, , 207-239.		4
293	High-Throughput Oxygen Consumption Measurements in Leaf Tissue Using Oxygen Sensitive Fluorophores. Methods in Molecular Biology, 2022, 2363, 63-75.	0.4	3
294	Plant Proteomics: Challenges and Resources. , 0, , 1-31.		2
295	Long bugs to short plants $\hat{a} \in$ " the Lon protease in protein stability and thermotolerance. New Phytologist, 2009, 181, 505-508.	3.5	2
296	Proteome Analyses for Characterization of Plant Mitochondria. Advances in Photosynthesis and Respiration, 2004, , 143-162.	1.0	2
297	Subcellular Proteomics as a Unified Approach of Experimental Localizations and Computed Prediction Data for Arabidopsis and Crop Plants. Advances in Experimental Medicine and Biology, 2021, 1346, 67-89.	0.8	2
298	Isolation of Plant Organelles and Structures. Methods in Molecular Biology, 2017, , .	0.4	1
299	Untangling Multi-gene Families in Plants by Integrating Proteomics into Functional Genomics. ChemInform, 2004, 35, no.	0.1	Ο
300	Blue-Native Page in Studying Protein Complexes. , 0, , 557-569.		0
301	Plant Mitochondria Biogenesis and Cellular Function. , 2014, , 1-15.		Ο
302	MITOCHONDRIAL BIOCHEMISTRY., 0,, 227-268.		0
303_	The Plant Mitochondrial Proteome and the Challenge of Hydrophobic Protein Analysis. , 0, , 361-375.		0