Abraham Hefetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2240637/publications.pdf

Version: 2024-02-01

81743 98622 5,882 142 39 67 citations g-index h-index papers 146 146 146 3594 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Commensal bacteria play a role in mating preference of <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20051-20056.	3.3	752
2	Primer Pheromones in Social Hymenoptera. Annual Review of Entomology, 2008, 53, 523-542.	5.7	358
3	Direct Behavioral Evidence for Hydrocarbons as Ant Recognition Discriminators. Die Naturwissenschaften, 1999, 86, 246-249.	0.6	292
4	Hydrocarbon dynamics within and between nestmates inCataglyphis niger (Hymenoptera: Formicidae). Journal of Chemical Ecology, 1995, 21, 365-378.	0.9	145
5	Individuality and colonial identity in ants: the emergence of the social representation concept. , 1999 , , $219-237$.		141
6	Juvenile hormone titers, juvenile hormone biosynthesis, ovarian development and social environment in Bombus terrestris. Journal of Insect Physiology, 2000, 46, 47-57.	0.9	133
7	Camponotus fellah colony integration: worker individuality necessitates frequent hydrocarbon exchanges. Animal Behaviour, 2000, 59, 1127-1133.	0.8	125
8	Regulation of reproduction by dominant workers in bumblebee (Bombus terrestris) queenright colonies. Behavioral Ecology and Sociobiology, 1999, 45, 125-135.	0.6	102
9	Exploring the role of juvenile hormone and vitellogenin in reproduction and social behavior in bumble bees. BMC Evolutionary Biology, 2014, 14, 45.	3.2	87
10	Effects of social conditions on Juvenile Hormone mediated reproductive development in Bombus terrestris workers. Physiological Entomology, 1996, 21, 257-267.	0.6	79
11	The role of Dufour's gland secretions in bees. Physiological Entomology, 1987, 12, 243-253.	0.6	72
12	Dufour's gland secretion of the queen honeybee (Apis mellifera): an egg discriminator pheromone or a queen signal?. Behavioral Ecology and Sociobiology, 2001, 51, 76-86.	0.6	72
13	The Physiological and Genomic Bases of Bumble Bee Social Behaviour. Advances in Insect Physiology, 2015, 48, 37-93.	1.1	71
14	Ecdysteroid titer, ovary status, and dominance in adult worker and queen bumble bees (Bombus) Tj ETQq0 0 0 rg	gBT/Qverlo	ock 10 Tf 50 2
15	Sneak in or repel your enemy: Dufour's gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology, 2000, 10, 135-142.	0.6	67
16	Solitary bees reduce investment in communication compared with their social relatives. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6569-6574.	3.3	67
17	Gonadotropic and Physiological Functions of Juvenile Hormone in Bumblebee (Bombus terrestris) Workers. PLoS ONE, 2014, 9, e100650.	1.1	66
18	Reproductive competition in the bumble-bee <i>Bombus terrestris:</i> bombus terrestris:bombus terrestris: <td>1.2</td> <td>63</td>	1.2	63

#	Article	IF	CITATIONS
19	Formation of Colony Odor in Ponerine Ant Pachycondyla apicalis. Journal of Chemical Ecology, 1998, 24, 1077-1090.	0.9	59
20	Caste Determination in Bombus terrestris: Differences in Development and Rates of JH Biosynthesis between Queen and Worker Larvae. Journal of Insect Physiology, 1997, 43, 373-381.	0.9	58
21	The appeasement effect of sterility signaling in dominance contests among Bombus terrestris workers. Behavioral Ecology and Sociobiology, 2010, 64, 1685-1694.	0.6	58
22	The critical period for caste determination in Bombus terrestris and its juvenile hormone correlates. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 1089-1094.	0.7	57
23	The Effect of Group Size on the Interplay between Dominance and Reproduction in Bombus terrestris. PLoS ONE, 2011, 6, e18238.	1.1	57
24	Social Life in Arid Environments: The Case Study of <i>Cataglyphis</i> Ants. Annual Review of Entomology, 2017, 62, 305-321.	5.7	57
25	Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. Journal of Insect Physiology, 2000, 46, 1097-1102.	0.9	55
26	Comparative dynamics of gestalt odour formation in two ant speciesCamponotus fellahandAphaenogaster senilis(Hymenoptera: Formicidae). Physiological Entomology, 2001, 26, 275-283.	0.6	54
27	Regulation of Reproduction in the Primitively Eusocial Wasp Ropalidia marginata: on the Trail of the Queen Pheromone. Journal of Chemical Ecology, 2010, 36, 424-431.	0.9	54
28	Production of sexuals in a fission-performing ant: dual effects of queen pheromones and colony size. Behavioral Ecology and Sociobiology, 2007, 61, 1531-1541.	0.6	52
29	Coordinated change at the colony level in fruit bat fur microbiomes through time. Nature Ecology and Evolution, 2019, 3, 116-124.	3.4	51
30	Social closure, aggressive behavior, and cuticular hydrocarbon profiles in the polydomous antCataglyphis iberica (hymenoptera, Formicidae). Journal of Chemical Ecology, 1996, 22, 2173-2186.	0.9	50
31	Social discrimination tuning in ants: template formation and chemical similarity. Behavioral Ecology and Sociobiology, 2006, 59, 353-363.	0.6	50
32	Reevaluation of the Role of Mandibular Glands in Regulation of Reproduction in Bumblebee Colonies. Journal of Chemical Ecology, 1999, 25, 881-896.	0.9	49
33	Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species. Die Naturwissenschaften, 2005, 92, 319-323.	0.6	49
34	Does the queen win it all? Queen?worker conflict over male production in the bumblebee, Bombus terrestris. Die Naturwissenschaften, 2004, 91, 400-3.	0.6	48
35	The little fire ant Wasmannia auropunctata: a new invasive species in the Middle East and its impact on the local arthropod fauna. Biological Invasions, 2010, 12, 1825-1837.	1.2	48
36	Postpharyngeal gland secretion as a modifier of aggressive behavior in the myrmicine antManica rubida. Journal of Insect Behavior, 1996, 9, 709-717.	0.4	47

#	Article	IF	Citations
37	Title is missing!. Journal of Insect Behavior, 1999, 12, 559-567.	0.4	47
38	Food influence on colonial recognition and chemical signature between nestmates in the fungus-growing ant Acromyrmex subterraneus subterraneus. Chemoecology, 2004, 14, 9-16.	0.6	46
39	Intraspecific competition in the ant Camponotus cruentatus: should we expect the  dear enemy' effect?. Animal Behaviour, 2007, 74, 985-993.	0.8	45
40	Queen regulates biogenic amine level and nestmate recognition in workers of the fire ant, Solenopsis invicta. Die Naturwissenschaften, 2008, 95, 1155-1158.	0.6	45
41	Nestmate recognition in the ant Cataglyphis niger : do queens matter?. Behavioral Ecology and Sociobiology, 1998, 43, 203-212.	0.6	43
42	Segregation of colony odor in the desert ant Cataglyphis niger. Journal of Chemical Ecology, 2001, 27, 927-943.	0.9	43
43	Dufour's gland pheromone as a reliable fertility signal among honeybee (Apis mellifera) workers. Behavioral Ecology and Sociobiology, 2005, 58, 270-276.	0.6	43
44	The origin of the chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants. Behavioral Ecology and Sociobiology, 2007, 61, 1637-1649.	0.6	43
45	The biosynthesis of Dufour's gland constituents in queens of the honeybee (Apis mellifera). Invertebrate Neuroscience, 1997, 3, 239-243.	1.8	41
46	Regulation of worker reproduction in bumblebees (Bombus terrestris): workers eavesdrop on a queen signal. Behavioral Ecology and Sociobiology, 2006, 60, 439-446.	0.6	41
47	Chemical communication is not sufficient to explain reproductive inhibition in the bumblebee <i>Bombus impatiens</i> . Royal Society Open Science, 2016, 3, 160576.	1.1	41
48	The gene road to royalty – differential expression of hydroxylating genes in the mandibular glands of the honeybee. FEBS Journal, 2009, 276, 5481-5490.	2.2	40
49	Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters sterility signal production in bumble bee (Bombus terrestris) workers. Journal of Experimental Biology, 2014, 217, 3178-85.	0.8	40
50	Species, individual and kin specific blends in Dufour's gland secretions of halictine bees. Journal of Chemical Ecology, 1986, 12, 197-208.	0.9	39
51	The Exocrinology of the Queen Bumble Bee Bombus terrestris (Hymenoptera: Apidae, Bombini). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1996, 51, 409-422.	0.6	39
52	Honeybees Dufour's gland - idiosyncrasy of a new queen signal. Apidologie, 2002, 33, 525-537.	0.9	38
53	Reversible royalty in worker honeybees (Apis mellifera) under the queen influence. Behavioral Ecology and Sociobiology, 2006, 61, 465-473.	0.6	38
54	Changes in diet, body mass and fatty acid composition during pre-hibernation in a subtropical bat in relation to NPY and AgRP expression. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 157-166.	0.7	37

#	Article	IF	Citations
55	Effects of honey bee (Apis mellifera L.) queen insemination volume on worker behavior and physiology. Journal of Insect Physiology, 2012, 58, 1082-1089.	0.9	35
56	Plasticity in caste-related exocrine secretion biosynthesis in the honey bee (Apis mellifera). Journal of Insect Physiology, 2000, 46, 993-998.	0.9	33
57	Ultrastructural and chemical characterization of egg surface of honeybee worker and queen-laid eggs. Chemoecology, 2003, 13, 129-134.	0.6	33
58	Colony insularity through queen control on worker social motivation in ants. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 971-977.	1.2	33
59	Ants regulate colony spatial organization using multiple chemical road-signs. Nature Communications, 2017, 8, 15414.	5.8	33
60	Reproductive plasticity in bumblebee workers (Bombus terrestris)â€"reversion from fertility to sterility under queen influence. Behavioral Ecology and Sociobiology, 2007, 62, 213-222.	0.6	32
61	Neural Mechanisms and Information Processing in Recognition Systems. Insects, 2014, 5, 722-741.	1.0	32
62	Genomic analysis of the interactions between social environment and social communication systems in honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 2014, 47, 36-45.	1.2	32
63	A comparative study of the exocrine products of cleptoparasitic bees (Holcopasites) and their hosts (Calliopsis) (Hymenoptera: Anthophoridae, Andrenidae). Journal of Chemical Ecology, 1982, 8, 1389-1397.	0.9	31
64	Structural and communicative functions of Dufour's gland secretion in Eucera palestinae (Hymenoptera; Anthophoridae). Insect Biochemistry, 1985, 15, 635-638.	1.8	31
65	Chemical Profiles of Two Pheromone Glands Are Differentially Regulated by Distinct Mating Factors in Honey Bee Queens (Apis mellifera L.). PLoS ONE, 2013, 8, e78637.	1.1	31
66	Trail pheromone of ponerine ant Gnamptogenys striatula: 4-methylgeranyl esters from Dufour's gland. Journal of Chemical Ecology, 2002, 28, 2557-2567.	0.9	30
67	Invasion of the dwarf honeybee Apis florea into the near East. Biological Invasions, 2010, 12, 1093-1099.	1.2	29
68	Chemistry of the postpharyngeal gland secretion and its implication for the phylogeny of IberianCataglyphis species (Hymenoptera: Formicidae). Chemoecology, 1996, 7, 163-171.	0.6	28
69	The front basitarsal brush in Pachycondyla apicalis and its role in hydrocarbon circulation. Chemoecology, 2001, 11, 17-24.	0.6	28
70	Mimicry of queen Dufour's gland secretions by workers of Apis mellifera scutellata and A. m. capensis. Die Naturwissenschaften, 2002, 89, 561-564.	0.6	28
71	Intraspecific competition affects population size and resource allocation in an ant dispersing by colony fission. Ecology, 2010, 91, 3312-3321.	1.5	28
72	Caste-specific differences in ecdysteroid titers in early larval stages of the bumblebee Bombus terrestris. Journal of Insect Physiology, 2000, 46, 1433-1439.	0.9	27

#	Article	IF	CITATIONS
73	Individual scent marking of the nest entrance as a mechanism for nest recognition in Xylocopa pubescens (Hymenoptera: Anthophoridae). Journal of Insect Behavior, 1992, 5, 763-772.	0.4	25
74	Dufour's gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. Journal of Insect Physiology, 2005, 51, 1158-1164.	0.9	25
75	Postmating changes in cuticular chemistry and visual appearance in Ectatomma tuberculatum queens (Formicidae: Ectatomminae). Die Naturwissenschaften, 2007, 95, 55-60.	0.6	24
76	The interplay between genetic and environmental effects on colony insularity in the clonal invasive little fire ant Wasmannia auropunctata. Behavioral Ecology and Sociobiology, 2009, 63, 1667-1677.	0.6	24
77	Evolution of worker sterility in honey bees: egg-laying workers express queen-like secretion in Dufour's gland. Behavioral Ecology and Sociobiology, 2002, 51, 588-589.	0.6	23
78	Chemical Discrimination and Aggressiveness via Cuticular Hydrocarbons in a Supercolony-Forming Ant, Formica yessensis. PLoS ONE, 2012, 7, e46840.	1.1	23
79	Evaluating the Role of Drone-Produced Chemical Signals in Mediating Social Interactions in Honey Bees (Apis mellifera). Journal of Chemical Ecology, 2018, 44, 1-8.	0.9	23
80	Are queen Bombus terrestris giant workers or are workers dwarf queens? Solving the 'chicken and egg' problem in a bumblebee species. Die Naturwissenschaften, 2001, 88, 85-87.	0.6	22
81	Do Bumble Bee, Bombus impatiens, Queens Signal their Reproductive and Mating Status to their Workers?. Journal of Chemical Ecology, 2017, 43, 563-572.	0.9	21
82	Ontogenetic Patterns in Amounts and Proportions of Dufour's Gland Volatile Secretions in Virgin and Nesting Queens of Lasioglossum malachurum (Hymenoptera: Halictidae). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 709-714.	0.6	21
83	The cuticular hydrocarbon profiles of honey bee workers develop via a socially-modulated innate process. ELife, 2019, 8, .	2.8	21
84	Task-related chemical analysis of labial gland volatile secretion in worker honeybees (Apis mellifera) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 5
85	Co-evolution-driven cuticular hydrocarbon variation between the slave-making ant Rossomyrmex minuchae and its host Proformica longiseta (Hymenoptera: Formicidae). Chemoecology, 2006, 16, 235-240.	0.6	20
86	Interspecific displacement mechanisms by the invasive little fire ant Wasmannia auropunctata. Biological Invasions, 2012, 14, 851-861.	1.2	20
87	The Effect of Caste and Reproductive State on the Chemistry of the Cephalic Labial Glands Secretion of Bombus Terrestris. Journal of Chemical Ecology, 2014, 40, 900-912.	0.9	20
88	Arrestment responses of Eretmocerus species and Encarsia deserti (Hymenoptera: Aphelinidae) to Bemisia tabaci honeydew. Journal of Insect Behavior, 1992, 5, 517-526.	0.4	19
89	In-nest environment modulates nestmate recognition in the ant Camponotus fellah. Die Naturwissenschaften, 2004, 91, 186-190.	0.6	19
90	The role of tyramine and octopamine in the regulation of reproduction in queenless worker honeybees. Die Naturwissenschaften, 2012, 99, 123-131.	0.6	19

#	Article	IF	CITATIONS
91	Dufour's gland secretion, sterility and foraging behavior: Correlated behavior traits in bumblebee workers. Journal of Insect Physiology, 2013, 59, 1250-1255.	0.9	19
92	At the brink of supercoloniality: genetic, behavioral, and chemical assessments of population structure of the desert ant Cataglyphis niger. Frontiers in Ecology and Evolution, 2014, 2, .	1.1	19
93	Chemistry of the Cephalic and Dufour's Gland Secretions of Melissodes Bees1. Annals of the Entomological Society of America, 1979, 72, 514-515.	1.3	18
94	Identification of new components from anal glands of Tapinoma simrothi pheonicium. Journal of Chemical Ecology, 1983, 9, 607-613.	0.9	18
95	Chemical integration of Thorictus myrmecophilous beetles into Cataglyphis ant nests. Biochemical Systematics and Ecology, 2013, 51, 335-342.	0.6	18
96	Function of secretion of mandibular gland of male in territorial behavior of Xylocopa sulcatipes (Hymenoptera: Anthophoridae). Journal of Chemical Ecology, 1983, 9, 923-931.	0.9	17
97	Role of labial glands in nesting behaviour of Chalicodoma sicula (Hymenoptera; Megachilidae). Physiological Entomology, 1984, 9, 175-179.	0.6	17
98	Nest volatiles as modulators of nestmate recognition in the ant Camponotus fellah. Journal of Insect Physiology, 2008, 54, 378-385.	0.9	15
99	Chemistry of the mandibular gland secretion of the Indian beePithitis smaragdula. Journal of Chemical Ecology, 1979, 5, 753-758.	0.9	14
100	Chemotaxonomy of some Cataglyphis ants from Morocco and Burkina Faso. Biochemical Systematics and Ecology, 2008, 36, 564-572.	0.6	14
101	Uncoupling fertility from fertility-associated pheromones in worker honeybees (Apis mellifera). Journal of Insect Physiology, 2009, 55, 205-209.	0.9	14
102	Sex specificity in the anal gland secretion of the Egyptian mongoose Herpestes ichneumon. Journal of Zoology, 1984, 203, 205-209.	0.8	14
103	Feminization of pheromone-sensing neurons affects mating decisions in <i>Drosophila</i> males. Biology Open, 2014, 3, 152-160.	0.6	14
104	Exocrine glands of Polyrhachis simplex: Chemistry and function. Journal of Chemical Ecology, 1982, 8, 635-639.	0.9	13
105	The critical role of primer pheromones in maintaining insect sociality. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2019, 74, 221-231.	0.6	13
106	The comparative exocrine chemistry of nine Old World species of Messor (Formicidae: Myrmicinae). Biochemical Systematics and Ecology, 2003, 31, 367-373.	0.6	12
107	Trail-following behaviour in two Aphaenogaster ants. Chemoecology, 2011, 21, 83-88.	0.6	12
108	Effects of the Argentine ant venom on terrestrial amphibians. Conservation Biology, 2021, 35, 216-226.	2.4	12

#	Article	IF	Citations
109	Individual Badges and Specific Messages in Multicomponent Pheromones of Bees. Entomologia Generalis, 1990, 15, 103-113.	1.1	12
110	Within-colony genetic diversity differentially affects foraging, nest maintenance, and aggression in two species of harvester ants. Scientific Reports, 2018, 8, 13868.	1.6	11
111	Cytonuclear incongruences hamper species delimitation in the socially polymorphic desert ants of the <i>Cataglyphis albicans</i> group in Israel. Journal of Evolutionary Biology, 2018, 31, 1828-1842.	0.8	11
112	The Interplay between Incipient Species and Social Polymorphism in the Desert Ant Cataglyphis. Scientific Reports, 2019, 9, 9495.	1.6	11
113	Evidence That Artificial Light at Night Induces Structure-Specific Changes in Brain Plasticity in a Diurnal Bird. Biomolecules, 2021, 11, 1069.	1.8	11
114	Mandibular Gland Secretions as Alarm Pheromones in Two Species of the Desert Ant Cataglyphis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1985, 40, 665-666.	0.6	10
115	Dufour's Gland Composition in the Desert Ant Cataglyphis: Species Specificity and Population Differences. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1992, 47, 285-289.	0.6	10
116	Identification of new homoterpene esters from Dufour's gland of the ponerine ant Gnamptogenys striatula. Journal of Chemical Ecology, 2002, 28, 2541-2555.	0.9	10
117	Brain modulation of Dufour's gland ester biosynthesis in vitro in the honeybee (Apis mellifera). Die Naturwissenschaften, 2007, 94, 407-411.	0.6	10
118	The significance of multicomponent pheromones in denoting specific compositions. Biochemical Systematics and Ecology, 1988, 16, 557-566.	0.6	9
119	Alteration of cuticular hydrocarbon composition affects heterospecific nestmate recognition in the carpenter ant Camponotus fellah. Chemoecology, 2010, 20, 19-24.	0.6	9
120	Origin and distribution of desert ants across the Gibraltar Straits. Molecular Phylogenetics and Evolution, 2018, 118, 122-134.	1.2	9
121	Hymenopteran exocrine secretions as a tool for chemosystematic analysis: Possibilities and constraints. Biochemical Systematics and Ecology, 1993, 21, 163-169.	0.6	8
122	Dufour's gland analysis reveals caste and physiology specific signals in Bombus impatiens. Scientific Reports, 2021, 11, 2821.	1.6	8
123	Alkaloids in the venom of Messor ants. Biochemical Systematics and Ecology, 2006, 34, 199-204.	0.6	6
124	Kin composition effects on reproductive competition among queenless honeybee workers. Die Naturwissenschaften, 2008, 95, 427-432.	0.6	6
125	Virgin honeybee queens fail to suppress worker fertility but not fertility signalling. Journal of Insect Physiology, 2013, 59, 311-317.	0.9	6
126	A peaceful zone bordering two Argentine ant (Linepithema humile) supercolonies. Chemoecology, 2013, 23, 213-218.	0.6	5

#	Article	IF	CITATIONS
127	Recognition of caste and mating status maintains monogyny in the ant Aphaenogaster senilis. Behavioral Ecology and Sociobiology, 2013, 67, 1295-1305.	0.6	5
128	Genetic Distance and Age Affect the Cuticular Chemical Profiles of the Clonal Ant Cerapachys biroi. Journal of Chemical Ecology, 2014, 40, 429-438.	0.9	5
129	Queen-produced volatiles change dynamically during reproductive swarming and are associated with changes in honey bee (Apis mellifera) worker behavior. Apidologie, 2015, 46, 679-690.	0.9	5
130	Plasticity of worker reproductive strategies in Bombus terrestris: lessons from artificial mixed-species colonies. Animal Behaviour, 2006, 72, 1417-1425.	0.8	4
131	Distance from the queen affects workers' selfish behaviour in the honeybee (A. mellifera) colony. Behavioral Ecology and Sociobiology, 2014, 68, 1693-1700.	0.6	3
132	Hormonal Regulation of Behavioral and Phenotypic Plasticity inÂBumblebees., 2017,, 453-464.		3
133	Determining social and population structures requires multiple approaches: A case study of the desert ant Cataglyphis israelensis. Ecology and Evolution, 2018, 8, 12365-12374.	0.8	3
134	Worker demography and behavior in a supercolonial ant colony: The case of the desert ant <i>Cataglyphis niger</i> . Ethology, 2020, 126, 59-67.	0.5	3
135	Preface: Pheromone-Mediation of Female Reproduction and Reproductive Dominance in Social Species. Journal of Chemical Ecology, 2018, 44, 747-749.	0.9	2
136	Evaluating the Effect of Honey Bee (Apis mellifera) Queen Reproductive State on Pheromone-Mediated Interactions with Male Drone Bees. Journal of Chemical Ecology, 2019, 45, 588-597.	0.9	2
137	A Gland of Many Uses: a Diversity of Compounds in the Labial Glands of the Bumble Bee Bombus impatiens Suggests Multiple Signaling Functions. Journal of Chemical Ecology, 2022, 48, 270-282.	0.9	2
138	New chemical data on the ant Myrmecina graminicola (Formicidae, Myrmicinae): Unusual abundance of alkene hydrocarbons and esters. Biochemical Systematics and Ecology, 2018, 80, 39-42.	0.6	1
139	The Exocrine Chemistry of the Parasitic Wasp Sphecophaga orientalis and Its Host Vespa orientalis: A Case of Chemical Deception?. Insects, 2021, 12, 2.	1.0	1
140	The payoffs and tradeoffs of hygienic behavior: a five year field study on a local population of honey bees. Journal of Apicultural Research, 0, , 1-10.	0.7	1
141	NOTE: FINE STRUCTURE OF THE SECRETORY TUBULES OF THE VENOM GLAND IN THE EUMENID WASP RHYNCHIUM CYANOPTERUM. Israel Journal of Zoology, 2002, 48, 83-86.	0.2	0
142	Murray S. Blum. American Entomologist, 2015, 61, 195-196.	0.1	O