List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2240322/publications.pdf Version: 2024-02-01

Μλέλεμι Βλν

#	Article	IF	CITATIONS
1	Temporal steering of a two-level system interacting with a coherent superposition of two environments. Quantum Information Processing, 2022, 21, 1.	1.0	2
2	Quantum correlations of two qubits indefinitely interacting with dephasing environments. Quantum Information Processing, 2022, 21, .	1.0	0
3	Two-qubit correlation in two independent environments with indefiniteness. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 385, 126936.	0.9	12
4	Operational non-Markovianity in a statistical mixture of two environments. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 397, 127246.	0.9	3
5	Non-classicality created by quantum channels with indefinite causal order. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 402, 127381.	0.9	2
6	On sequential measurements with indefinite causal order. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 403, 127383.	0.9	4
7	Decoherence of a two-qubit system interacting with initially correlated random telegraph noises. Quantum Information Processing, 2020, 19, 1.	1.0	6
8	Decoherence of a two-level system in a coherent superposition of two dephasing environments. Quantum Information Processing, 2020, 19, 1.	1.0	4
9	Relaxation process of a two-level system in a coherent superposition of two environments. Quantum Information Processing, 2020, 19, 1.	1.0	6
10	Temporal nonlocality of a two-level system interacting with a dephasing environment. Quantum Information Processing, 2020, 19, 1.	1.0	4
11	Two-time correlations functions and quantumness of an open two-level system. European Physical Journal D, 2019, 73, 1.	0.6	2
12	Leggett-Garg Inequality and Quantumness Under the Influence of Random Telegraph Noise. International Journal of Theoretical Physics, 2019, 58, 2893-2909.	0.5	4
13	Decoherence of a two-level system interacting with a disturbed Ohmic reservoir. Quantum Information Processing, 2019, 18, 1.	1.0	1
14	Decoherence of quantum systems sequentially interacting with a common environment. Physical Review A, 2019, 99, .	1.0	4
15	Environmental Effects on Two-Qubit Correlation in the Dispersive Jaynes-Cummings Model. International Journal of Theoretical Physics, 2018, 57, 1455-1470.	0.5	0
16	Two-time correlation function of an open quantum system in contact with a Gaussian reservoir. Physical Review A, 2018, 97, .	1.0	11
17	Two-time correlation functions of a two-level system influenced by a composite environment. Quantum Information Processing, 2018, 17, 1.	1.0	1
18	Coherence, detectability and correlation in the generalized Coleman–Hepp model. Quantum Information Processing, 2018, 17, 1.	1.0	0

#	Article	IF	CITATIONS
19	Linear response theory for open systems: Quantum master equation approach. Physical Review A, 2017, 95, .	1.0	18
20	Expansion formulas for quantum master equations including initial correlation. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 125303.	0.7	17
21	Relaxation Process of Interacting Two-mode System Influenced by Markovian Thermal Reservoirs. International Journal of Theoretical Physics, 2017, 56, 530-545.	0.5	1
22	Violation of the quantum regression theorem and the Leggett–Garg inequality in an exactly solvable model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2313-2317.	0.9	6
23	Weak measurement on a quantum system in contact with a thermal reservoir: projection operator method. Quantum Studies: Mathematics and Foundations, 2017, 4, 339-355.	0.4	5
24	Double-time correlation functions of two quantum operations in open systems. Physical Review A, 2017, 96, .	1.0	7
25	Quantum discord for two-qubit systems in the Bloch channel: effects of longitudinal and transversal relaxation times. Quantum Information Processing, 2017, 16, 1.	1.0	1
26	Transient linear response of a two-level system interacting with an environment to a phase modulating field. Journal of Modern Optics, 2017, 64, 81-92.	0.6	3
27	Decoherence of a weak value influenced by a non-Markovian environment. Quantum Studies: Mathematics and Foundations, 2016, 3, 313-326.	0.4	6
28	Postselected quantum systems and their time evolution in non-equilibrium thermo-field dynamics. Quantum Studies: Mathematics and Foundations, 2016, 3, 203-220.	0.4	0
29	Bayes cost of parameter estimation for a quantum system interacting with an environment. Quantum Information Processing, 2016, 15, 2213-2230.	1.0	1
30	Conditional average in a quantum system with postselection. Quantum Studies: Mathematics and Foundations, 2015, 2, 263-273.	0.4	3
31	Cumulant Expansion for a System with Pre- and Post-Selection and a Weak Value of a Gaussian System. International Journal of Theoretical Physics, 2015, 54, 1342-1351.	0.5	0
32	Decoherence of weak values in a pure dephasing process. Quantum Studies: Mathematics and Foundations, 2015, 2, 23-36.	0.4	10
33	Linear response theory for open quantum systems within the framework of the ABL formalism. Quantum Studies: Mathematics and Foundations, 2015, 2, 51-62.	0.4	11
34	Quantum Fisher information of a qubit initially correlated with a non-Markovian environment. Quantum Information Processing, 2015, 14, 4163-4177.	1.0	14
35	Linear response of a pre- and post-selected system to an external field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 284-288.	0.9	9
36	Quadrature operators with arbitrary phase and applications to phase-space distribution and quantum communication. Journal of Modern Optics, 2014, 61, 582-607.	0.6	1

#	Article	IF	CITATIONS
37	Noisy parametric amplifiers in non-equilibrium thermo field dynamics. Journal of Modern Optics, 2014, 61, 1348-1355.	0.6	1
38	Quantum State Discrimination with Prior Knowledge in Noisy Quantum Channels. International Journal of Theoretical Physics, 2013, 52, 312-321.	0.5	1
39	Dephasing of qubits due to an observable stochastic variable. Physical Review A, 2013, 87, .	1.0	3
40	Qubit dephasing affected by preparation-induced initial correlation with stochastic environment. Physical Review A, 2013, 87, .	1.0	2
41	Correlations between quantum and stochastic systems with a dephasing coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 534-539.	0.9	3
42	A solvable dissipative Jaynes–Cummings model with initial correlation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 224004.	0.6	8
43	Weak Values Influenced by Environment. Journal of Modern Physics, 2013, 04, 1-8.	0.3	5
44	Decay of two-qubit correlations in the squeezed Bloch channel. Journal of Modern Optics, 2012, 59, 823-829.	0.6	3
45	Decay of two-qubit correlation in correlated stochastic dephasing. Journal of Modern Optics, 2012, 59, 1209-1218.	0.6	2
46	Distance Between Qubit States with Initial System-Environment Correlation. International Journal of Theoretical Physics, 2012, 51, 2419-2426.	0.5	9
47	Quantum Master Equation with Damping Operator Including Interaction Effect for the Raman-Coupled Model with Cavity Damping. International Journal of Theoretical Physics, 2012, 51, 151-166.	0.5	1
48	Exact time-evolution of the dispersive Jaynes–Cummings model: the effect of initial correlation and master equation approach. Journal of Modern Optics, 2011, 58, 640-651.	0.6	5
49	Exact time evolution and second-order quantum master equations for two interacting qubits. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 422-429.	0.9	1
50	Qubit decoherence with an initial correlation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2283-2290.	0.9	24
51	Trace distance in stochastic dephasing with initial correlation. Physical Review A, 2011, 84, .	1.0	7
52	Relaxation process of quantum system: Stochastic Liouville equation and initial correlation. Physical Review A, 2010, 82, .	1.0	19
53	Theory of decoherence control in a fluctuating environment. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 135504.	0.6	7
54	Disentanglement of two-qubit system in the Bloch channel. Optics Communications, 2010, 283, 3812-3817.	1.0	1

#	Article	IF	CITATIONS
55	Reduced dynamics and the master equation of open quantum systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2324-2330.	0.9	20
56	Nonequilibrium dynamics of the dispersive Jaynes–Cummings model by a non-Markovian quantum master equation. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 335305.	0.7	5
57	A relaxation process including interaction effects of a two-qubit system. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 035303.	0.7	5
58	Optical Lindblad operator in non-equilibrium thermo field dynamics. Journal of Modern Optics, 2009, 56, 577-592.	0.6	9
59	Quantum master equation for dephasing of a two-level system with an initial correlation. Physical Review A, 2009, 80, .	1.0	27
60	Generalized model of the quantum measurement process in an environment. Physical Review A, 2009, 79, .	1.0	2
61	Dynamical suppression of dephasing for Markov processes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3614-3618.	0.9	6
62	Dephasing of two interacting qubits under the influence of thermal reservoirs. Physical Review A, 2009, 80, .	1.0	20
63	Completely Entangled State and Simultaneous Eigenstate in a Finite Dimensional Space. International Journal of Theoretical Physics, 2008, 47, 3267-3272.	0.5	1
64	Quantum mechanical model for two-state jump Markovian process. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 351-355.	0.9	11
65	Dynamical approach to complementarity of interferometers. Journal of Modern Optics, 2008, 55, 3625-3639.	0.6	6
66	Dynamical suppression of stochastic dephasing of a qubit. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, S229-S238.	0.6	6
67	Quantum master equation approach to dynamical suppression of decoherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 2641-2651.	0.6	10
68	Decoherence of qubit entanglement caused by transient environments. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 689-696.	0.6	8
69	Decoherence of nonclassicality and entanglement in transient environments. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 361, 48-54.	0.9	6
70	Decoherence of continuous variable quantum information in non-Markovian channels. Journal of Physics A, 2006, 39, 1927-1943.	1.6	53
71	Decoherence of quantum information of qubits by stochastic dephasing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 349, 415-421.	0.9	26
72	Correlated and collective stochastic dephasing of qubit entanglement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 354, 35-39.	0.9	11

#	Article	lF	CITATIONS
73	Decoherence in phase-preserving linear dissipative processes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 359, 402-405.	0.9	11
74	Decoherence of entanglement in the Bloch channel. Journal of Physics A, 2005, 38, 4235-4245.	1.6	21
75	Decoherence of quantum information in the non-Markovian qubit channel. Journal of Physics A, 2005, 38, 7161-7174.	1.6	37
76	Properties of continuous variable quantum teleportation. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 224-230.	1.4	8
77	Phase-space approach to continuous variable quantum teleportation. Physical Review A, 2004, 69, .	1.0	33
78	Discrimination Among Quantum States. International Journal of Theoretical Physics, 2004, 43, 27-33.	0.5	4
79	Practical scheme for optimal measurement in quantum interferometric devices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 313, 16-20.	0.9	6
80	Continuous variable teleportation as a generalized thermalizing quantum channel. Journal of Physics A, 2002, 35, L401-L405.	1.6	32
81	The phase operator in quantum information processing. Journal of Physics A, 2002, 35, L193-L198.	1.6	12
82	Quantum channel of continuous variable teleportation and nonclassicality of quantum states. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, 114-122.	1.4	18
83	Optimal parameter estimation of a depolarizing channel. Physical Review A, 2002, 66, .	1.0	42
84	Reliability function of quantum dense coding of continuous variables. Optics Communications, 2001, 189, 97-102.	1.0	18
85	Information transmission via dense coding in a noisy quantum channel. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 276, 213-220.	0.9	20
86	Quantum dense coding of continuous variables in a noisy quantum channel. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 786-791.	1.4	40
87	Cut-off rate performance of quantum communication channels with symmetric signal states. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 206-218.	1.4	10
88	Quantum dense coding via a two-mode squeezed-vacuum state. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, L9-L11.	1.4	122
89	Information and Entropy in Quantum Measurement Processes. International Journal of Theoretical Physics, 1998, 37, 2491-2537.	0.5	6
90	Photon-echo technique for reducing the decoherence of a quantum bit. Journal of Modern Optics, 1998, 45, 2315-2325.	0.6	105

#	Article	IF	CITATIONS
91	Phase-space representation of quantum state vectors. Journal of Mathematical Physics, 1998, 39, 1744-1765.	0.5	20
92	Accessible information in combined and sequential quantum measurementson a binary-state signal. Physical Review A, 1997, 55, 22-26.	1.0	22
93	Quantum theory of the homodyne-direct receiver. Journal of Modern Optics, 1997, 44, 1175-1195.	0.6	5
94	Generation of a single-mode squeezed state via a non-degenerate parametric amplifier. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 233, 284-290.	0.9	12
95	Entropy change and information gain in photon counting measurement. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 235, 209-216.	0.9	5
96	State change, quantum probability, and information in operational phase-space measurement. International Journal of Theoretical Physics, 1997, 36, 2583-2638.	0.5	12
97	Optimum measurements for discrimination among symmetric quantum states and parameter estimation. International Journal of Theoretical Physics, 1997, 36, 1269-1288.	0.5	186
98	Equivalence of lossless beam splitter and nondegenerate parametric amplifier in conditional measurement. Optics Communications, 1997, 143, 225-229.	1.0	17
99	Optimizations of quantum measurement processes for signal detection and information transmission in quantum systems. Journal of Modern Optics, 1996, 43, 2337-2354.	0.6	13
100	Derivation and physical interpretation of the optimum detection operators for coherent-state signals. Physical Review A, 1996, 54, 1691-1701.	1.0	65
101	Photon statistics of conditional output states of lossless beam splitter. Journal of Modern Optics, 1996, 43, 1281-1303.	0.6	42
102	Error-free optimum quantum receiver for a binary pure quantum state signal. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 213, 235-238.	0.9	10
103	Reduction to the Fock state via a degenerate four-wave mixing. Optics Communications, 1996, 130, 365-376.	1.0	9
104	Upper bound of the accessible information and lower bound of the Bayes cost in quantum signal-detection processes. Physical Review A, 1996, 54, 2718-2727.	1.0	14
105	Quantum phase superoperator and antinormal ordering of the Susskind-Glogower phase operators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 199, 275-280.	0.9	8
106	Continuous measurement of photon number for superpositions of coherent states. Physical Review A, 1995, 51, 1604-1611.	1.0	10
107	Quantum phase superoperator. Physical Review A, 1995, 51, 2469-2481.	1.0	10
108	Quasicontinuous measurements of photon number. Physical Review A, 1994, 49, 5078-5085.	1.0	35

#	Article	IF	CITATIONS
109	Unitary equivalence between ideal and feasible phases. Physical Review A, 1994, 50, 2785-2787.	1.0	16
110	Theory of electron-counting processes. Physical Review A, 1994, 49, 4142-4160.	1.0	9
111	Superpositions of the SU(1, 1) coherent states. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 193, 121-125.	0.9	13
112	Electron counting probability. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 172, 337-344.	0.9	7
113	Phase operator in quantum optics. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 176, 47-53.	0.9	24
114	Decomposition formulas for su(1, 1) and su(2) Lie algebras and their applications in quantum optics. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 1347.	0.9	111
115	Lie-algebra methods in quantum optics: The Liouville-space formulation. Physical Review A, 1993, 47, 5093-5119.	1.0	56
116	Relative-state formulation of quantum systems. Physical Review A, 1993, 48, 3452-3465.	1.0	20
117	SU(1,1) Lie algebraic approach to linear dissipative processes in quantum optics. Journal of Mathematical Physics, 1992, 33, 3213-3228.	0.5	64
118	Phase state and phase probability distribution. Optics Communications, 1992, 94, 231-237.	1.0	24
119	Relaxation of physical systems in relative-number state representation. Foundations of Physics Letters, 1992, 5, 297-313.	0.6	9
120	Relative number state representation and phase operator for physical systems. Journal of Mathematical Physics, 1991, 32, 3077-3087.	0.5	48
121	Phase operator and its eigenstate in Liouville space. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 155, 397-402.	0.9	22
122	Number-phase quantization in ultra-small tunnel junctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 152, 223-228.	0.9	22
123	Phase variable and phase relaxation processes in the Liouville space. Physica A: Statistical Mechanics and Its Applications, 1991, 179, 103-130.	1.2	12
124	Power laws in the resistive state in high-Tcsuperconductors. Physical Review B, 1989, 40, 4419-4422.	1.1	70
125	Thermo field dynamical approach to optical dephasing. Physica A: Statistical Mechanics and Its Applications, 1987, 146, 89-125.	1.2	18
126	Relaxation Process in an Analytically Solvable Model of Optical Dephasing–Two-Pulse Excitation–. Journal of the Physical Society of Japan, 1986, 55, 1759-1777.	0.7	11

#	Article	IF	CITATIONS
127	A solvable model of microscopic frequency modulation. Physica A: Statistical Mechanics and Its Applications, 1985, 129, 455-468.	1.2	17
128	A Note on the Second Order Optical Process for a Solvable Model of Microscopic Phase Modulation to Intermediate State. Journal of the Physical Society of Japan, 1984, 53, 76-78.	0.7	7
129	A Note on the Analytical Treatment of a Localized Electron-Phonon System Including the Change of Frequency. Journal of the Physical Society of Japan, 1984, 53, 939-942.	0.7	5
130	A solvable model of microscopic frequency modulation. Physica A: Statistical Mechanics and Its Applications, 1984, 123, 131-148.	1.2	19