Jaime Agudo-Canalejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239999/publications.pdf

Version: 2024-02-01

414414 567281 1,215 32 15 32 g-index citations h-index papers 36 36 36 1713 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Question. Journal of the American Chemical Society, 2022, 144, 1380-1388.	13.7	16
2	Dynamics of spontaneous wrapping of microparticles by floppy lipid membranes. Physical Review Research, 2022, 4, .	3.6	7
3	Chemotactic self-caging in active emulsions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	29
4	Particle engulfment by strongly asymmetric membranes with area reservoirs. Soft Matter, 2021, 17, 298-307.	2.7	6
5	Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature, 2021, 591, 142-146.	27.8	140
6	Should I bend or should I grow: the mechanisms of droplet-mediated autophagosome formation. Autophagy, 2021, 17, 1046-1048.	9.1	6
7	Topology Protects Chiral Edge Currents in Stochastic Systems. Physical Review X, 2021, 11, .	8.9	9
8	Non-equilibrium phase separation in mixtures of catalytically active particles: size dispersity and screening effects. European Physical Journal E, 2021, 44, 113.	1.6	15
9	Synchronization and Enhanced Catalysis of Mechanically Coupled Enzymes. Physical Review Letters, 2021, 127, 208103.	7.8	6
10	Scalar Active Mixtures: The Nonreciprocal Cahn-Hilliard Model. Physical Review X, 2020, 10, .	8.9	59
11	Wrapping of Microparticles by Floppy Lipid Vesicles. Physical Review Letters, 2020, 125, 198102.	7.8	29
12	Cooperatively enhanced reactivity and "stabilitaxis―of dissociating oligomeric proteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11894-11900.	7.1	15
13	Self-assembled vesicle–colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation. Chinese Physics B, 2020, 29, 064704.	1.4	1
14	Engulfment of ellipsoidal nanoparticles by membranes: full description of orientational changes. Journal of Physics Condensed Matter, 2020, 32, 294001.	1.8	5
15	Diffusion and steady state distributions of flexible chemotactic enzymes. European Physical Journal: Special Topics, 2020, 229, 2791-2806.	2.6	12
16	Active Phase Separation in Mixtures of Chemically Interacting Particles. Physical Review Letters, 2019, 123, 018101.	7.8	91
17	Chemical and hydrodynamic alignment of an enzyme. Journal of Chemical Physics, 2019, 150, 115102.	3.0	10
18	Formation of Autophagosomes Coincides with Relaxation of Membrane Curvature. Methods in Molecular Biology, 2019, 1880, 173-188.	0.9	5

#	Article	IF	CITATIONS
19	Engulfment of nanoparticles by membranes. Advances in Biomembranes and Lipid Self-Assembly, 2019, , 195-227.	0.6	0
20	Membrane Nanotubes Increase the Robustness of Giant Vesicles. ACS Nano, 2018, 12, 4478-4485.	14.6	56
21	Phoresis and Enhanced Diffusion Compete in Enzyme Chemotaxis. Nano Letters, 2018, 18, 2711-2717.	9.1	72
22	Enhanced Diffusion and Chemotaxis at the Nanoscale. Accounts of Chemical Research, 2018, 51, 2365-2372.	15.6	53
23	Biomembrane Adhesion to Substrates Topographically Patterned with Nanopits. Biophysical Journal, 2018, 115, 1292-1306.	0.5	7
24	Domes and cones: Adhesion-induced fission of membranes by ESCRT proteins. PLoS Computational Biology, 2018, 14, e1006422.	3.2	19
25	Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and curvature-induced forces. Soft Matter, 2017, 13, 2155-2173.	2.7	32
26	Pattern formation by curvature-inducing proteins on spherical membranes. New Journal of Physics, 2017, 19, 125013.	2.9	9
27	Modulating Vesicle Adhesion by Electric Fields. Biophysical Journal, 2016, 111, 1454-1464.	0.5	29
28	Stabilization of membrane necks by adhesive particles, substrate surfaces, and constriction forces. Soft Matter, 2016, 12, 8155-8166.	2.7	20
29	Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes. ACS Nano, 2016, 10, 463-474.	14.6	79
30	Critical Particle Sizes for the Engulfment of Nanoparticles by Membranes and Vesicles with Bilayer Asymmetry. ACS Nano, 2015, 9, 3704-3720.	14.6	148
31	Adhesive Nanoparticles as Local Probes of Membrane Curvature. Nano Letters, 2015, 15, 7168-7173.	9.1	38
32	Wrapping of nanoparticles by membranes. Advances in Colloid and Interface Science, 2014, 208, 214-224.	14.7	186