Muwan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Scientific Reports, 2013, 3, 2243.	3.3	108
2	Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomaterialia, 2011, 7, 2244-2255.	8.3	90
3	Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release. International Journal of Nanomedicine, 2012, 7, 4285.	6.7	56
4	Functionalization of Polycaprolactone Scaffolds with Hyaluronic Acid and β-TCP Facilitates Migration and Osteogenic Differentiation of Human Dental Pulp Stem Cells <i>In Vitro</i> . Tissue Engineering - Part A, 2015, 21, 729-739.	3.1	50
5	Enhanced efficacy of chemotherapy for breast cancer stem cells by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Acta Biomaterialia, 2015, 28, 171-182.	8.3	49
6	Interference in the endplate nutritional pathway causes intervertebral disc degeneration in an immature porcine model. International Orthopaedics, 2014, 38, 1011-1017.	1.9	41
7	Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model. Sicot-j, 2016, 2, 16.	1.8	41
8	A single topical dose of erythropoietin applied on a collagen carrier enhances calvarial bone healing in pigs. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 85, 201-209.	3.3	28
9	Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold <i>In Vitro</i> . BioResearch Open Access, 2015, 4, 363-373.	2.6	28
10	A tissue-engineered therapeutic device inhibits tumor growth in vitro and in vivo. Acta Biomaterialia, 2015, 18, 21-29.	8.3	22
11	A traditional Chinese medicine formula extracts stimulate proliferation and inhibit mineralization of human mesenchymal stem cells in vitro. Journal of Ethnopharmacology, 2009, 125, 75-82.	4.1	19
12	Spatially Controlled Delivery of siRNAs to Stem Cells in Implants Generated by Multiâ€Component Additive Manufacturing. Advanced Functional Materials, 2013, 23, 5599-5607.	14.9	19
13	Rapid generation of regionally specified CNS neurons by sequential patterning and conversion of human induced pluripotent stem cells. Stem Cell Research, 2020, 48, 101945.	0.7	16
14	Co-delivery of siRNA and doxorubicin to cancer cells from additively manufactured implants. RSC Advances, 2015, 5, 101718-101725.	3.6	13
15	Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin. International Journal of Nanomedicine, 2011, 6, 3057.	6.7	10
16	In vivo drug release behavior and osseointegration of a doxorubicin-loaded tissue-engineered scaffold. RSC Advances, 2016, 6, 76237-76245.	3.6	9
17	Generation of Human iPSCs by Episomal Reprogramming of Skin Fibroblasts and Peripheral Blood Mononuclear Cells. Methods in Molecular Biology, 2021, 2239, 135-151.	0.9	7
18	Free radicals generated by tantalum implants antagonize the cytotoxic effect of doxorubicin. International Journal of Pharmaceutics, 2013, 448, 214-220.	5.2	6

MUWAN CHEN

#	Article	IF	CITATIONS
19	A Modified Monomeric Red Fluorescent Protein Reporter for Assessing CRISPR Activity. Frontiers in Cell and Developmental Biology, 2018, 6, 54.	3.7	6
20	Generation of eight human induced pluripotent stem cell lines from Parkinson's disease patients carrying familial mutations. Stem Cell Research, 2020, 42, 101657.	0.7	6
21	Central and Peripheral Nervous System Progenitors Derived from Human Pluripotent Stem Cells Reveal a Unique Temporal and Cell-Type Specific Expression of PMCAs. Frontiers in Cell and Developmental Biology, 2018, 6, 5.	3.7	3
22	Generation of an induced pluripotent stem cell line (DANi-011A) from a Parkinson's disease patient with a LRRK2 p.G2019S mutation. Stem Cell Research, 2020, 45, 101781.	0.7	1