
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fiji: an open-source platform for biological-image analysis. Nature Methods, 2012, 9, 676-682.	9.0	47,818
2	The Embryonic Development of Drosophila melanogaster. , 1985, , .		1,038
3	TrakEM2 Software for Neural Circuit Reconstruction. PLoS ONE, 2012, 7, e38011.	1.1	832
4	Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biology, 2002, 3, research0088.1.	13.9	600
5	A Systematic Nomenclature for the Insect Brain. Neuron, 2014, 81, 755-765.	3.8	564
6	The drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron, 1994, 12, 977-996.	3.8	504
7	Specification of Drosophila Hematopoietic Lineage by Conserved Transcription Factors. Science, 2000, 288, 146-149.	6.0	441
8	The Embryonic Development of Drosophila melanogaster. , 1997, , .		435
9	The Development of Cellular Junctions in the Drosophila Embryo. Developmental Biology, 1994, 161, 563-596.	0.9	428
10	Global analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biology, 2007, 8, R145.	13.9	387
11	Thicker Than Blood. Developmental Cell, 2003, 5, 673-690.	3.1	384
12	CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics, 2009, 25, 1984-1986.	1.8	333
13	Early neurogenesis in wild-typeDrosophila melanogaster. Wilhelm Roux's Archives of Developmental Biology, 1984, 193, 308-325.	1.4	326
14	A genome-wide resource for the analysis of protein localisation in Drosophila. ELife, 2016, 5, e12068.	2.8	315
15	G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nature Methods, 2009, 6, 603-605.	9.0	314
16	An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy. PLoS Biology, 2010, 8, e1000502.	2.6	308
17	A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature, 2007, 446, 320-324.	13.7	264
18	Neuronal determination without cell division in xenopus embryos. Neuron, 1991, 6, 499-515.	3.8	240

#	Article	IF	CITATIONS
19	The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. Journal of Endocrinology, 2006, 190, 555-570.	1.2	234
20	Blood Cells and Blood Cell Development in the Animal Kingdom. Annual Review of Cell and Developmental Biology, 2006, 22, 677-712.	4.0	213
21	The embryonic development of the Drosophila visual system. Cell and Tissue Research, 1993, 273, 583-598.	1.5	205
22	Early neurogenesis in xenopus: The spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord. Neuron, 1989, 3, 399-411.	3.8	192
23	The hematopoietic stem cell and its niche: a comparative view. Genes and Development, 2007, 21, 3044-3060.	2.7	191
24	Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nature Genetics, 2004, 36, 1019-1023.	9.4	187
25	The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature, 2008, 454, 651-655.	13.7	173
26	Recurrent Circuitry for Balancing Sleep Need and Sleep. Neuron, 2018, 97, 378-389.e4.	3.8	172
27	Embryonic origin and differentiation of the Drosophila heart. Roux's Archives of Developmental Biology, 1994, 203, 266-280.	1.2	170
28	Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations. Current Biology, 2017, 27, 1098-1110.	1.8	149
29	The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster. Roux's Archives of Developmental Biology, 1987, 196, 473-485.	1.2	146
30	Early neurogenesis of theDrosophila brain. Journal of Comparative Neurology, 1996, 370, 313-329.	0.9	145
31	Fate-mapping in wild-typeDrosophila melanogaster. Wilhelm Roux's Archives of Developmental Biology, 1985, 194, 181-195.	1.4	144
32	Morphogenesis and proliferation of the larval brain glia in Drosophila. Developmental Biology, 2005, 283, 191-203.	0.9	142
33	Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. Developmental Biology, 2007, 302, 309-323.	0.9	141
34	Studying Drosophila embryogenesis with P-lacZ enhancer trap lines. Roux's Archives of Developmental Biology, 1992, 201, 194-220.	1.2	140
35	Control of Early Neurogenesis of theDrosophilaBrain by the Head Gap Genestll, otd, ems,andbtd. Developmental Biology, 1997, 182, 270-283.	0.9	136
36	Spatial expression of transcription factors in Drosophila embryonic organ development. Genome Biology, 2013, 14, R140.	13.9	135

#	Article	IF	CITATIONS
37	Neural Lineages of the Drosophila Brain: A Three-Dimensional Digital Atlas of the Pattern of Lineage Location and Projection at the Late Larval Stage. Journal of Neuroscience, 2006, 26, 5534-5553.	1.7	133
38	Morphological diversity and development of glia in <i>Drosophila</i> . Clia, 2011, 59, 1237-1252.	2.5	118
39	Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland. Development Genes and Evolution, 2011, 221, 121-131.	0.4	115
40	Role of DE-Cadherin in Neuroblast Proliferation, Neural Morphogenesis, and Axon Tract Formation in <i>Drosophila</i> Larval Brain Development. Journal of Neuroscience, 2003, 23, 3325-3335.	1.7	112
41	The Evolution of Early Neurogenesis. Developmental Cell, 2015, 32, 390-407.	3.1	112
42	Early development of theDrosophila brain: III. The pattern of neuropile founder tracts during the larval period. Journal of Comparative Neurology, 2003, 455, 417-434.	0.9	109
43	Early pattern of neuronal differentiation in theXenopus embryonic brainstem and spinal cord. Journal of Comparative Neurology, 1993, 328, 213-231.	0.9	103
44	Flatworm stem cells and the germ line: Developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Developmental Biology, 2008, 319, 146-159.	0.9	96
45	Development of the insect stomatogastric nervous system. Trends in Neurosciences, 1997, 20, 421-427.	4.2	92
46	Embryonic development of theDrosophila brain. I. Pattern of pioneer tracts. Journal of Comparative Neurology, 1998, 402, 10-31.	0.9	87
47	To Be or Not to Be a Flatworm: The Acoel Controversy. PLoS ONE, 2009, 4, e5502.	1.1	86
48	Early development of theDrosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin. Journal of Comparative Neurology, 2003, 455, 451-462.	0.9	82
49	The Development of the Drosophila Larval Brain. Advances in Experimental Medicine and Biology, 2008, 628, 1-31.	0.8	81
50	Dpp and Hh signaling in the <i>Drosophila</i> embryonic eye field. Development (Cambridge), 2001, 128, 4691-4704.	1.2	76
51	A visual pathway for skylight polarization processing in Drosophila. ELife, 2021, 10, .	2.8	72
52	The embryonic development of the triclad Schmidtea polychroa. Development Genes and Evolution, 2005, 215, 109-131.	0.4	71
53	The Drosophila neural lineages: a model system to study brain development and circuitry. Development Genes and Evolution, 2010, 220, 1-10.	0.4	71
54	Developmentâ€based compartmentalization of the <i>Drosophila</i> central brain. Journal of Comparative Neurology, 2010, 518, 2996-3023.	0.9	71

VOLKER HARTENSTEIN

#	Article	IF	CITATIONS
55	Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Developmental Biology, 2010, 346, 284-295.	0.9	71
56	Embryonic development of theDrosophila brain. II. Pattern of glial cells. Journal of Comparative Neurology, 1998, 402, 32-47.	0.9	69
57	Evolution of sensory structures in basal metazoa. Integrative and Comparative Biology, 2007, 47, 712-723.	0.9	69
58	Early development of theDrosophila brain: IV. Larval neuropile compartments defined by glial septa. Journal of Comparative Neurology, 2003, 455, 435-450.	0.9	68
59	Embryonic development and metamorphosis of the scyphozoan Aurelia. Development Genes and Evolution, 2008, 218, 525-539.	0.4	68
60	The blood/vascular system in a phylogenetic perspective. BioEssays, 2006, 28, 1203-1210.	1.2	66
61	Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Developmental Biology, 2004, 274, 280-294.	0.9	65
62	Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway. Developmental Biology, 2011, 353, 161-172.	0.9	65
63	Hematopoiesis and hematopoietic organs in arthropods. Development Genes and Evolution, 2013, 223, 103-115.	0.4	65
64	Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Development Genes and Evolution, 2002, 212, 55-69.	0.4	63
65	Neuronal Constituents and Putative Interactions Within the Drosophila Ellipsoid Body Neuropil. Frontiers in Neural Circuits, 2018, 12, 103.	1.4	63
66	Sensillum development in the absence of cell division: The sensillum phenotype of the Drosophila mutant string. Developmental Biology, 1990, 138, 147-158.	0.9	62
67	The exceptional stem cell system of Macrostomum lignano: Screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation. Frontiers in Zoology, 2007, 4, 9.	0.9	61
68	Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria,) Tj ETQq0 0 () rgBT ₄ /Ove	erlock 10 Tf 50
69	Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain. Developmental Biology, 2009, 335, 289-304.	0.9	60
70	Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Development Genes and Evolution, 2013, 223, 85-102.	0.4	59
71	Conserved Role of the Vsx Genes Supports a Monophyletic Origin for Bilaterian Visual Systems. Current Biology, 2008, 18, 1278-1287.	1.8	58
72	Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts. Developmental Biology, 2013, 384, 228-257.	0.9	58

VOLKER HARTENSTEIN

#	Article	IF	CITATIONS
73	Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Developmental Biology, 2013, 384, 258-289.	0.9	58
74	Embryonic origin of the imaginal discs of the head of Drosophila melanogaster. Roux's Archives of Developmental Biology, 1993, 203, 60-73.	1.2	57
75	Embryonic development of the stomatogastric nervous system inDrosophila. Journal of Comparative Neurology, 1994, 350, 367-381.	0.9	57
76	The embryonic development of the flatworm Macrostomum sp Development Genes and Evolution, 2004, 214, 220-239.	0.4	57
77	Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain. Gene Expression Patterns, 2007, 7, 584-595.	0.3	57
78	Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa). Development Genes and Evolution, 2009, 219, 301-317.	0.4	55
79	sine oculis in basal Metazoa. Development Genes and Evolution, 2004, 214, 342-51.	0.4	54
80	Eye evolution at high resolution: The neuron as a unit of homology. Developmental Biology, 2009, 332, 70-79.	0.9	54
81	Developmental analysis of the dopamineâ€containing neurons of the <i>Drosophila</i> brain. Journal of Comparative Neurology, 2017, 525, 363-379.	0.9	53
82	Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. Development (Cambridge), 2002, 129, 3983-3994.	1.2	52
83	The Drosophila larval visual system: High-resolution analysis of a simple visual neuropil. Developmental Biology, 2011, 358, 33-43.	0.9	51
84	Embryonic origin of theDrosophila brain neuropile. Journal of Comparative Neurology, 2006, 497, 981-998.	0.9	50
85	Tracheal development in the Drosophila brain is constrained by glial cells. Developmental Biology, 2007, 302, 169-180.	0.9	50
86	Identifying Neuronal Lineages of <i>Drosophila</i> by Sequence Analysis of Axon Tracts. Journal of Neuroscience, 2010, 30, 7538-7553.	1.7	50
87	The proteoglycan Trol controls the architecture of the extracellular matrix and balances proliferation and differentiation of blood progenitors in the Drosophila lymph gland. Developmental Biology, 2013, 384, 301-312.	0.9	48
88	Initial neurogenesis in <i>Drosophila</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 701-721.	5.9	48
89	A novel tissue in an established model system: the Drosophila pupal midgut. Development Genes and Evolution, 2011, 221, 69-81.	0.4	47
90	Early embryogenesis of planaria: a cryptic larva feeding on maternal resources. Development Genes and Evolution, 2006, 216, 667-681.	0.4	46

#	Article	IF	CITATIONS
91	Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis. Development Genes and Evolution, 2010, 220, 61-76.	0.4	45
92	Genetic Control of Intestinal Stem Cell Specification and Development: A Comparative View. Stem Cell Reviews and Reports, 2012, 8, 597-608.	5.6	45
93	Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors. Developmental Biology, 2015, 404, 2-20.	0.9	45
94	Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain. Developmental Biology, 2009, 334, 355-368.	0.9	41
95	Compartmentalization of the precheliceral neuroectoderm in the spider <i>Cupiennius salei</i> : Development of the arcuate body, optic ganglia, and mushroom body. Journal of Comparative Neurology, 2010, 518, 2612-2632.	0.9	41
96	The emergence of patterned movement during late embryogenesis ofDrosophila. Developmental Neurobiology, 2007, 67, 1669-1685.	1.5	40
97	Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Developmental Biology, 2011, 357, 117-132.	0.9	39
98	The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Developmental Biology, 2004, 270, 350-363.	0.9	38
99	Evolutionary origin of rhopalia: insights from cellularâ€level analyses of Otx and POU expression patterns in the developing rhopalial nervous system. Evolution & Development, 2010, 12, 404-415.	1.1	38
100	Expression profile of the cadherin family in the developing <i>Drosophila</i> brain. Journal of Comparative Neurology, 2008, 506, 469-488.	0.9	37
101	Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile. Development Genes and Evolution, 2007, 217, 569-584.	0.4	36
102	Migration of <i>Drosophila</i> intestinal stem cells across organ boundaries. Development (Cambridge), 2013, 140, 1903-1911.	1.2	36
103	Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user's guide to the dynamic morphology of the developing optic lobe. Developmental Biology, 2017, 428, 1-24.	0.9	35
104	Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster. Development Genes and Evolution, 2006, 216, 39-51.	0.4	34
105	The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration. Frontiers in Microbiology, 2014, 5, 498.	1.5	34
106	Structure and development of the subesophageal zone of the <i>Drosophila</i> brain. II. Sensory compartments. Journal of Comparative Neurology, 2018, 526, 33-58.	0.9	34
107	A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila. Development Genes and Evolution, 2017, 227, 253-269.	0.4	33
108	Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system. Developmental Biology, 2013, 373, 322-337.	0.9	32

#	Article	IF	CITATIONS
109	A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior. Frontiers in Neuroanatomy, 2014, 8, 166.	0.9	31
110	Development of the anterior visual input pathway to the <i>Drosophila</i> central complex. Journal of Comparative Neurology, 2017, 525, 3458-3475.	0.9	31
111	Embryonic development of the nervous system of the rhabdocoel flatwormMesostoma lingua (Abildgaard, 1789). , 2000, 416, 461-474.		30
112	Arborization pattern of <i>Engrailed</i> â€positive neural lineages reveal neuromere boundaries in the <i>Drosophila</i> brain neuropil. Journal of Comparative Neurology, 2009, 517, 87-104.	0.9	29
113	Structure and development of the subesophageal zone of the <i>Drosophila</i> brain. I. Segmental architecture, compartmentalization, and lineage anatomy. Journal of Comparative Neurology, 2018, 526, 6-32.	0.9	29
114	The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm. Developmental Biology, 2011, 353, 105-118.	0.9	28
115	A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates. Current Biology, 2016, 26, R1001-R1009.	1.8	28
116	Mitochondrial dynamics regulates Drosophila intestinal stem cell differentiation. Cell Death Discovery, 2018, 4, 17.	2.0	28
117	Neuronal fiber tracts connecting the brain and ventral nerve cord of the early <i>Drosophila</i> larva. Journal of Comparative Neurology, 2009, 515, 427-440.	0.9	27
118	Bazooka mediates secondary axon morphology in Drosophila brain lineages. Neural Development, 2011, 6, 16.	1.1	27
119	Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Developmental Biology, 2014, 390, 102-115.	0.9	26
120	Hydroxyurea-mediated neuroblast ablation establishes birth dates of secondary lineages and addresses neuronal interactions in the developing Drosophila brain. Developmental Biology, 2015, 402, 32-47.	0.9	26
121	Antagonistic relationship between Dpp and EGFR signaling in Drosophila head patterning. Developmental Biology, 2003, 263, 103-113.	0.9	25
122	The Macrostomum lignano EST database as a molecular resource for studying platyhelminth development and phylogeny. Development Genes and Evolution, 2006, 216, 695-707.	0.4	25
123	The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Development Genes and Evolution, 2013, 223, 149-157.	0.4	25
124	Metamorphosis of the Drosophila visceral musculature and its role in intestinal morphogenesis and stem cell formation. Developmental Biology, 2016, 420, 43-59.	0.9	25
125	Identification of Dopaminergic Neurons That Can Both Establish Associative Memory and Acutely Terminate Its Behavioral Expression. Journal of Neuroscience, 2020, 40, 5990-6006.	1.7	25
126	Role of FGFR signaling in the morphogenesis of theDrosophila visceral musculature. Developmental Dynamics, 2004, 231, 342-348.	0.8	24

#	Article	IF	CITATIONS
127	Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain. Developmental Biology, 2015, 406, 14-39.	0.9	24
128	Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. Development (Cambridge), 2002, 129, 3983-94.	1.2	24
129	Developmentally Arrested Precursors of Pontine Neurons Establish an Embryonic Blueprint of the Drosophila Central Complex. Current Biology, 2019, 29, 412-425.e3.	1.8	23
130	Embryonic development of the nervous system of the temnocephalid flatwormCraspedella pedum. Journal of Comparative Neurology, 2001, 434, 56-68.	0.9	22
131	Lineageâ€based analysis of the development of the central complex of the <i>drosophila</i> brain. Journal of Comparative Neurology, 2011, 519, 661-689.	0.9	22
132	The embryonic development of the bodywall and nervous system of the cestode flatworm Hymenolepis diminuta. Cell and Tissue Research, 2003, 311, 427-435.	1.5	20
133	Connecting the nervous and the immune systems in evolution. Communications Biology, 2018, 1, 64.	2.0	20
134	Digital three-dimensional models of Drosophila development. Current Opinion in Genetics and Development, 2004, 14, 382-391.	1.5	19
135	Homologies Between Vertebrate and Invertebrate Eyes. Results and Problems in Cell Differentiation, 2002, 37, 219-255.	0.2	18
136	Development of neural lineages derived from the sine oculis positive eye field of Drosophila. Arthropod Structure and Development, 2003, 32, 303-317.	0.8	17
137	Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila. General and Comparative Endocrinology, 2010, 166, 462-469.	0.8	17
138	Origins of glial cell populations in the insect nervous system. Current Opinion in Insect Science, 2016, 18, 96-104.	2.2	17
139	Pattern, time of birth, and morphogenesis of sensillum progenitors inDrosophila. , 1997, 39, 479-491.		15
140	The embryonic development of the temnocephalid flatworms Craspedella pedum and Diceratocephala boschmai. Cell and Tissue Research, 2001, 304, 295-310.	1.5	15
141	Structural and Developmental Disparity in the Tentacles of the Moon Jellyfish Aurelia sp.1. PLoS ONE, 2015, 10, e0134741.	1.1	15
142	Patterns of growth and tract formation during the early development of secondary lineages in the <scp><i>D</i></scp> <i>rosophila</i> larval brain. Developmental Neurobiology, 2016, 76, 434-451.	1.5	14
143	Functional brain regeneration in the acoel worm <i>Symsagittifera roscoffensis</i> . Biology Open, 2015, 4, 1688-1695.	0.6	13
144	Origin and dynamic lineage characteristics of the developing Drosophila midgut stem cells. Developmental Biology, 2016, 416, 347-360.	0.9	13

#	Article	IF	CITATIONS
145	Expression-Based Cell Lineage Analysis in <i>Drosophila</i> Through a Course-Based Research Experience for Early Undergraduates. G3: Genes, Genomes, Genetics, 2019, 9, 3791-3800.	0.8	13
146	An efficient promoter trap for detection of patterned gene expression and subsequent functional analysis in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17813-17817.	3.3	11
147	bHLH proneural genes as cell fate determinants of entero-endocrine cells, an evolutionarily conserved lineage sharing a common root with sensory neurons. Developmental Biology, 2017, 431, 36-47.	0.9	11
148	Structure and spatial pattern of the sensilla of the body segments of insect larvae. , 1997, 39, 470-478.		10
149	The Muscle Pattern of Drosophila. , 2006, , 8-27.		10
150	Modeling the Developing Drosophila Brain: Rationale, Technique, and Application. BioScience, 2008, 58, 823-836.	2.2	10
151	Drosophila E-cadherin and its binding partner Armadillo/ β-catenin are required for axonal pathway choices in the developing larval brain. Developmental Biology, 2009, 332, 371-382.	0.9	10
152	Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia. Development Genes and Evolution, 2016, 226, 383-387.	0.4	10
153	Mechanisms of cnidocyte development in the moon jellyfish <i>Aurelia</i> . Evolution & Development, 2019, 21, 72-81.	1.1	10
154	Genetic Dissection of Hematopoiesis Using Drosophila as a Model System. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, , 259-299.	0.4	9
155	Stem cells in the context of evolution and development. Development Genes and Evolution, 2013, 223, 1-3.	0.4	9
156	The role of cell lineage in the development of neuronal circuitry and function. Developmental Biology, 2021, 475, 165-180.	0.9	8
157	Structural aspects of the aging invertebrate brain. Cell and Tissue Research, 2021, 383, 931-947.	1.5	8
158	An atlas of the developing <i>Tribolium castaneum</i> brain reveals conservation in anatomy and divergence in timing to <i>Drosophila melanogaster</i> . Journal of Comparative Neurology, 2022, 530, 2335-2371.	0.9	8
159	One too many: the surprising heterogeneity of <i>Drosophila</i> macrophages. EMBO Journal, 2020, 39, e105199.	3.5	7
160	Hexapoda: A Drosophila's View of Development. , 2015, , 1-91.		6
161	Introduction to insect sensory organs as a model system in sensory physiology and developmental biology. , 1997, 39, 467-469.		5
162	Regulation of cell adhesion in the Drosophila embryo by phosphorylation of the Cadherin-Catenin-Complex. Cell and Tissue Research, 2006, 324, 157-166.	1.5	5

#	Article	IF	CITATIONS
163	Genetic analysis of early neurogenesis: Dedicated to the scientific contributions of Jose A. Campos-Ortega (1940–2004). Developmental Dynamics, 2006, 235, 2003-2008.	0.8	4
164	From Blood to Brain: The Neurogenic Niche of the Crayfish Brain. Developmental Cell, 2014, 30, 253-254.	3.1	3
165	Development of the Nervous System of Invertebrates. , 0, , 71-122.		3
166	Developmental Plasticity, Straight from the Worm's Mouth. Cell, 2013, 155, 742-743.	13.5	1
167	Rhomboid Enhancer Activity Defines a Subset of Drosophila Neural Precursors Required for Proper Feeding, Growth and Viability. PLoS ONE, 2015, 10, e0134915.	1.1	1
168	Role of neoblasts in the patterned postembryonic growth of the platyhelminth Macrostomum lignano. Neurogenesis (Austin, Tex), 2018, 5, e1469944.	1.5	1
169	Embryonic development of the Drosophila brain. I. Pattern of pioneer tracts. , 1998, 402, 10.		1
170	Editorial. Development Genes and Evolution, 2004, 214, 579-581.	0.4	0
171	Serial electron microscopic reconstruction of the drosophila larval eye: Photoreceptors with a rudimentary rhabdomere of microvillar-like processes. Developmental Biology, 2019, 453, 56-67.	0.9	0
172	Flies do the locomotion. ELife, 2015, 4, .	2.8	0