
Thomas Glade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. Journal of Mountain Science, 2022, 19, 1670-1698.	0.8	41
2	Quantification of biogeomorphic interactions between smallâ€scale sediment transport and primary vegetation succession on proglacial slopes of the Gepatschferner, Austria. Earth Surface Processes and Landforms, 2021, 46, 1941-1952.	1.2	13
3	Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria. Landslides, 2021, 18, 3531-3546.	2.7	30
4	National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geoscience Frontiers, 2021, 12, 101248.	4.3	72
5	Numerical analysis of landslide-generated impulse waves affected by the reservoir geometry. Engineering Geology, 2020, 266, 105390.	2.9	16
6	Numerical simulation data on landslide generated impulse waves affected by the reservoir geometry. Data in Brief, 2020, 28, 104938.	0.5	0
7	Landslide Displacement Prediction Combining LSTM and SVR Algorithms: A Case Study of Shengjibao Landslide from the Three Gorges Reservoir Area. Applied Sciences (Switzerland), 2020, 10, 7830.	1.3	23
8	A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability, 2020, 12, 3697.	1.6	37
9	Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China. Climatic Change, 2020, 162, 761-779.	1.7	48
10	Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas. Engineering Geology, 2020, 270, 105572.	2.9	82
11	Editorial at the occasion of the 100th volume of natural hazards. Natural Hazards, 2020, 100, 1-2.	1.6	2
12	The (f)utility to account for pre-failure topography in data-driven landslide susceptibility modelling. Geomorphology, 2020, 354, 107041.	1.1	19
13	Probabilistic hazard analysis of impulse waves generated by multiple subaerial landslides and its application to Wu Gorge in Three Gorges Reservoir, China. Engineering Geology, 2020, 276, 105773.	2.9	9
14	Displacement characteristics and prediction of Baishuihe landslide in the Three Gorges Reservoir. Journal of Mountain Science, 2019, 16, 2203-2214.	0.8	20
15	Preface: Damage of natural hazards: assessment and mitigation. Natural Hazards and Earth System Sciences, 2019, 19, 551-554.	1.5	12
16	Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity. Earth Surface Processes and Landforms, 2019, 44, 1259-1273.	1.2	11
17	Spatially distributed rainfall information and its potential for regional landslide early warning systems. Natural Hazards, 2018, 91, 103.	1.6	10
18	Probabilistic landslide ensemble prediction systems: lessons to be learned from hydrology. Natural Hazards and Earth System Sciences, 2018, 18, 2183-2202.	1.5	35

#	Article	IF	CITATIONS
19	Delineation of subsurface variability in clay-rich landslides through spectral induced polarization imaging and electromagnetic methods. Engineering Geology, 2018, 245, 292-308.	2.9	22
20	The influence of forest cover on landslide occurrence explored with spatio-temporal information. Geomorphology, 2017, 290, 250-264.	1.1	62
21	The Challenge of "Trivial Areas―in Statistical Landslide Susceptibility Modelling. , 2017, , 803-808.		11
22	Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps. Natural Hazards, 2017, 85, 929-957.	1.6	38
23	The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements. Landslides, 2017, 14, 1767-1781.	2.7	81
24	Editorial to the special issue on resilience and vulnerability assessments in natural hazard and risk analysis. Natural Hazards and Earth System Sciences, 2017, 17, 1203-1206.	1.5	5
25	Landslide Susceptibility Mapping at National Scale: A First Attempt for Austria. , 2017, , 943-951.		10
26	Integration of Geometrical Root System Approximations in Hydromechanical Slope Stability Modelling. , 2017, , 301-308.		0
27	A Common Methodology for Risk Assessment and Mapping of Climate Change Related Hazards—Implications for Climate Change Adaptation Policies. Climate, 2016, 4, 8.	1.2	33
28	The propagation of inventory-based positional errors into statistical landslide susceptibility models. Natural Hazards and Earth System Sciences, 2016, 16, 2729-2745.	1.5	81
29	Evaluation of Shallow Landslides in the Northern Walgau (Austria) Using Morphometric Analysis Techniques. Procedia Earth and Planetary Science, 2016, 16, 177-184.	0.6	5
30	Foreword: Vulnerability assessment in natural hazard risk—a dynamic perspective. Natural Hazards, 2016, 82, 1-5.	1.6	13
31	Landslide-driven erosion and slope–channel coupling in steep, forested terrain, Ruahine Ranges, New Zealand, 1946–2011. Catena, 2016, 142, 252-268.	2.2	40
32	On the bibliometric coordinates of four different research fields in Geography. Scientometrics, 2016, 107, 873-897.	1.6	17
33	A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania. Natural Hazards, 2016, 82, 89-109.	1.6	23
34	Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology, 2016, 262, 8-23.	1.1	114
35	Landslide displacement analysis based on fractal theory, in Wanzhou District, Three Gorges Reservoir, China. Geomatics, Natural Hazards and Risk, 2016, 7, 1707-1725.	2.0	12
36	Assessing drought and drought-related wildfire risk in Kanjiza, Serbia: the SEERISK methodology. Natural Hazards, 2016, 80, 709-726.	1.6	13

#	Article	IF	CITATIONS
37	A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. Journal of Environmental Management, 2016, 168, 123-132.	3.8	266
38	Exploring possibilities of including detailed ALS derived biomass information into physically-based slope stability models at regional scale. , 2016, , 1807-1815.		2
39	Scenarios of Land Cover Change and Landslide Susceptibility: An Example from the Buzau Subcarpathians, Romania. , 2015, , 743-746.		10
40	Spatiotemporal patterns of landslide exposure – a step within future landslide risk analysis on a regional scale applied in Waidhofen/Ybbs Austria. International Journal of Disaster Risk Reduction, 2015, 12, 25-33.	1.8	24
41	Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach – An application in Nehoiu Valley, Romania. International Journal of Disaster Risk Reduction, 2015, 13, 229-241.	1.8	82
42	Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania. Environmental Management, 2015, 56, 1228-1243.	1.2	35
43	Loss estimation for landslides in mountain areas – An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling and Software, 2015, 63, 156-169.	1.9	97
44	Evaluating the Effect of Modelling Methods and Landslide Inventories Used for Statistical Susceptibility Modelling. , 2015, , 201-204.		7
45	Vulnerability to Heat Waves, Floods, and Landslides in Mountainous Terrain. , 2014, , 179-201.		6
46	Assessing the quality of landslide susceptibility maps – case study Lower Austria. Natural Hazards and Earth System Sciences, 2014, 14, 95-118.	1.5	176
47	Assessing the Effect of Mitigation Measures on Landslide Hazard Using 2D Numerical Runout Modelling. , 2014, , 679-684.		7
48	Integration of a limit-equilibrium model into a landslide early warning system. Landslides, 2014, 11, 859-875.	2.7	80
49	Characteristics of earthquake- and rain-induced landslides near the epicenter of Wenchuan earthquake. Engineering Geology, 2014, 175, 58-73.	2.9	99
50	Early warning systems for natural hazards and risks. Natural Hazards, 2014, 70, 1669-1671.	1.6	46
51	Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Applied Geography, 2014, 53, 11-19.	1.7	87
52	Debris flows risk analysis and direct loss estimation: the case study of Valtellina di Tirano, Italy. Journal of Mountain Science, 2014, 11, 288-307.	0.8	20
53	Quantification of model uncertainty in debris flow vulnerability assessment. Engineering Geology, 2014, 181, 15-26.	2.9	51
54	Relative Age Estimation at Landslide Mapping on LiDAR Derivatives: Revealing the Applicability of Land Cover Data in Statistical Susceptibility Modelling. , 2014, , 337-343.		5

#	Article	IF	CITATIONS
55	Introduction: The components of Risk Governance. Advances in Natural and Technological Hazards Research, 2014, , 1-27.	1.1	5
56	Medium-Scale Multi-hazard Risk Assessment of Gravitational Processes. Advances in Natural and Technological Hazards Research, 2014, , 201-231.	1.1	26
57	Natural hazards and resilience: exploring institutional and organizational dimensions of social resilience. Natural Hazards, 2013, 67, 1-6.	1.6	42
58	A WebGIS decision-support system for slope stability based on limit-equilibrium modelling. Engineering Geology, 2013, 158, 109-118.	2.9	24
59	Modeling of dangerous phenomena and innovative techniques for hazard evaluation and risk mitigation. Georisk, 2013, 7, 237-239.	2.6	1
60	Risk evolution: how can changes in the built environment influence the potential loss of natural hazards?. Natural Hazards and Earth System Sciences, 2013, 13, 2195-2207.	1.5	15
61	Risk Governance. Encyclopedia of Earth Sciences Series, 2013, , 863-870.	0.1	5
62	Landslide Inventories for Reliable Susceptibility Maps in Lower Austria. , 2013, , 281-286.		10
63	Landslide Susceptibility Maps for Spatial Planning in Lower Austria. , 2013, , 467-472.		4
64	Rainfall Threshold Analysis and Landslide Susceptibility Mapping in Wudu County. , 2013, , 659-664.		1
65	The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a mediumâ€sized agricultural catchment, austria. Geografiska Annaler, Series A: Physical Geography, 2012, 94, 511-529.	0.6	34
66	Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol. Natural Hazards, 2012, 64, 2083-2105.	1.6	125
67	Challenges of analyzing multi-hazard risk: a review. Natural Hazards, 2012, 64, 1925-1958.	1.6	478
68	Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges. Natural Hazards, 2012, 64, 1969-1975.	1.6	148
69	Man-made linear flow paths at catchment scale: Identification, factors and consequences for the efficiency of vegetated filter strips. Landscape and Urban Planning, 2012, 104, 245-252.	3.4	37
70	Physical vulnerability assessment for alpine hazards: state of the art and future needs. Natural Hazards, 2011, 58, 645-680.	1.6	207
71	Systems theory in Geomorphology A challenge. Zeitschrift Für Geomorphologie, 2011, 55, 87-108.	0.3	3
72	Distribution and Susceptibility Assessments of Landslide Triggered by Wencuan Earthquake at Longnan. Advances in Intelligent and Soft Computing, 2011, , 547-554.	0.2	2

#	Article	IF	CITATIONS
73	Editorial for the special issue: extreme events and vulnerability in environment and society. Natural Hazards, 2010, 55, 571-576.	1.6	7
74	Stability analysis of a human-influenced landslide in eastern Belgium. Geomorphology, 2010, 120, 38-47.	1.1	38
75	Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology, 2008, 93, 89-103.	1.1	120
76	Challenges in geomorphological methods and techniques. Geomorphology, 2008, 93, 1-2.	1.1	6
77	Determination of potential landslide shear plane depth using seismic refraction—a case study in Rheinhessen, Germany. Bulletin of Engineering Geology and the Environment, 2005, 64, 151-158.	1.6	31
78	Evolution of natural risk: research framework and perspectives. Natural Hazards and Earth System Sciences, 2005, 5, 375-387.	1.5	64
79	Linking debris-flow hazard assessments with geomorphology. Geomorphology, 2005, 66, 189-213.	1.1	121
80	Climatic factors influencing occurrence of debris flows. , 2005, , 325-362.		158
81	Quantitative risk analysis for landslides ‒ Examples from BÃłdudalur, NW-Iceland. Natural Hazards and Earth System Sciences, 2004, 4, 117-131.	1.5	179
82	Towards Establishing Climatic Thresholds for Slope Instability: Use of a Physically-based Combined Soil Hydrology-slope Stability Model. Pure and Applied Geophysics, 2004, 161, 881-905.	0.8	49
83	Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena, 2003, 51, 297-314.	2.2	445
84	Linking global circulation model outputs to regional geomorphic models: a case study of landslide activity in New Zealand. Climate Research, 2003, 25, 135-150.	0.4	34
85	Applying Probability Determination to Refine Landslide-triggering Rainfall Thresholds Using an Empirical "Antecedent Daily Rainfall Model". Pure and Applied Geophysics, 2000, 157, 1059-1079.	0.8	394
86	Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environmental Geology, 1998, 35, 160-174.	1.2	182
87	Towards a National Landslide Information Base for New Zealand. New Zealand Geographer, 1996, 52, 29-40.	0.4	33
88	Review and future challenges in snow avalanche risk analysis. , 0, , 49-62.		17
89	Vulnerability analysis in geomorphic risk assessment. , 0, , 233-244.		15