List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239231/publications.pdf Version: 2024-02-01

ΔΑΤΡΙCIA

#	Article	IF	CITATIONS
1	Hybrid Catalysts Comprised of Graphene Modified with Rhodium-Based N-Heterocyclic Carbenes for Alkyne Hydrosilylation. ACS Applied Nano Materials, 2020, 3, 1640-1655.	5.0	27
2	Influence of graphene sheet properties as supports of iridium-based N-heterocyclic carbene hybrid materials for water oxidation electrocatalysis. Journal of Organometallic Chemistry, 2020, 919, 121334.	1.8	8
3	β-(Z) Selectivity Control by Cyclometalated Rhodium(III)–Triazolylidene Homogeneous and Heterogeneous Terminal Alkyne Hydrosilylation Catalysts. ACS Catalysis, 2020, 10, 13334-13351.	11.2	28
4	Microwave heating as a novel route for obtaining carbon precursors from anthracene oil. Fuel Processing Technology, 2019, 192, 250-257.	7.2	8
5	Enhanced Chemical and Electrochemical Water Oxidation Catalytic Activity by Hybrid Carbon Nanotube-Based Iridium Catalysts Having Sulfonate-Functionalized NHC ligands. ACS Applied Energy Materials, 2019, 2, 3283-3296.	5.1	10
6	In-situ carboxylation of graphene by chemical vapor deposition growth for biosensing. Carbon, 2019, 141, 719-727.	10.3	7
7	Morphological changes in graphene materials caused by solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 73-79.	4.7	9
8	Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids. Fuel, 2017, 203, 253-260.	6.4	16
9	Role of quinoline insoluble particles during the processing of coal tars to produce graphene materials. Fuel, 2017, 206, 99-106.	6.4	20
10	Experimental and Statistical Optimization of the Tensile Strength of Carbon Fibers from Pitches with Different Composition. Industrial & Engineering Chemistry Research, 2017, 56, 3243-3250.	3.7	3
11	Graphene patterning by nanosecond laser ablation: the effect of the substrate interaction with graphene. Journal Physics D: Applied Physics, 2016, 49, 305301.	2.8	10
12	Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes Journal of Physics: Conference Series, 2016, 712, 012052.	0.4	1
13	Cokes of different origin as precursors of graphene oxide. Fuel, 2016, 166, 400-403.	6.4	33
14	Enhancing the hydrogen transfer catalytic activity of hybrid carbon nanotube-based NHC–iridium catalysts by increasing the oxidation degree of the nanosupport. Catalysis Science and Technology, 2016, 6, 5504-5514.	4.1	20
15	Graphene anchored palladium complex as efficient and recyclable catalyst in the Heck cross-coupling reaction. Journal of Molecular Catalysis A, 2016, 416, 140-146.	4.8	43
16	Effect of structural differences of carbon nanotubes and graphene based iridium-NHC materials on the hydrogen transfer catalytic activity. Carbon, 2016, 96, 66-74.	10.3	25
17	Quantitative X-ray Fluorescence Analysis of Biomass (Switchgrass, Corn Stover, Eucalyptus, Beech,) Tj ETQq1 1 (& Fuels, 2015, 29, 1669-1685.	0.784314 5.1	rgBT /Overlo 29
18	The influence of carbon nanotubes characteristics in their performance as positive electrodes in vanadium redox flow batteries. Sustainable Energy Technologies and Assessments, 2015, 9, 105-110.	2.7	25

#	Article	IF	CITATIONS
19	New alternatives to graphite for producing graphene materials. Carbon, 2015, 93, 812-818.	10.3	37
20	CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods. Chemical Engineering Journal, 2015, 281, 704-712.	12.7	63
21	Tuning graphene properties by a multi-step thermal reduction process. Carbon, 2015, 90, 160-163.	10.3	21
22	Surface treatment of polyimide substrates for the transfer and multitransfer of graphene films. Applied Surface Science, 2015, 349, 101-107.	6.1	12
23	Comparative Study of Screen-Printed Electrodes Modified with Graphene Oxides Reduced by a Constant Current. Journal of the Electrochemical Society, 2015, 162, B282-B290.	2.9	17
24	Graphene–NHC–iridium hybrid catalysts built through –OH covalent linkage. Carbon, 2015, 83, 21-31.	10.3	31
25	A novel approach for the production of chemically activated carbon fibers. Chemical Engineering Journal, 2015, 260, 463-468.	12.7	39
26	N-enriched ACF from coal-based pitch blended with urea-based resin for CO2 capture. Microporous and Mesoporous Materials, 2015, 201, 10-16.	4.4	23
27	Chemicals from Coal Coking. Chemical Reviews, 2014, 114, 1608-1636.	47.7	166
28	Tailoring micro-mesoporosity in activated carbon fibers to enhance SO2 catalytic oxidation. Journal of Colloid and Interface Science, 2014, 428, 36-40.	9.4	18
29	Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. Journal of Power Sources, 2014, 248, 886-893.	7.8	35
30	Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors. Materials Letters, 2014, 136, 214-217.	2.6	27
31	A multi-step exfoliation approach to maintain the lateral size of graphene oxide sheets. Carbon, 2014, 80, 830-832.	10.3	14
32	Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon, 2013, 65, 156-164.	10.3	345
33	Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. Journal of Materials Chemistry C, 2013, 1, 6905.	5.5	259
34	Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon, 2013, 63, 576-578.	10.3	77
35	Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon, 2013, 55, 62-69.	10.3	146
36	Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries. Journal of Power Sources, 2013, 241, 349-354.	7.8	57

#	Article	IF	CITATIONS
37	Thermally reduced graphite and graphene oxides in VRFBs. Nano Energy, 2013, 2, 1322-1328.	16.0	37
38	Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide. Carbon, 2013, 52, 476-485.	10.3	236
39	Enhanced Hydrogen-Transfer Catalytic Activity of Iridium N-Heterocyclic Carbenes by Covalent Attachment on Carbon Nanotubes. ACS Catalysis, 2013, 3, 1307-1317.	11.2	77
40	Influence of the alignment degree of CVD-grown carbon nanotubes on their functionalization and adsorption capacity. Diamond and Related Materials, 2013, 37, 1-7.	3.9	6
41	Structural Properties and Molecular Mass Distributions of Biomass-Coal Cogasification Tars as a Function of Aging. Energy & amp; Fuels, 2013, 27, 3786-3801.	5.1	7
42	An insight into the polymerization of anthracene oil to produce pitch using nuclear magnetic resonance. Fuel, 2013, 105, 471-476.	6.4	34
43	Quantitative X-ray Fluorescence Analysis of Biomass: Objective Evaluation of a Typical Commercial Multi-Element Method on a WD-XRF Spectrometer. Energy & Fuels, 2013, 27, 7439-7454.	5.1	27
44	Reconstruction of the carbon sp ² network in graphene oxide by low-temperature reaction with CO. Journal of Materials Chemistry, 2012, 22, 51-56.	6.7	26
45	Tailored graphene materials by chemical reduction of graphene oxides of different atomic structure. RSC Advances, 2012, 2, 9643.	3.6	51
46	Characterisation and feasibility as carbon fibre precursors of isotropic pitches derived from anthracene oil. Fuel, 2012, 101, 9-15.	6.4	30
47	The effect of the parent graphite on the structure of graphene oxide. Carbon, 2012, 50, 275-282.	10.3	188
48	Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries. Carbon, 2012, 50, 828-834.	10.3	129
49	Novel coal-based precursors for cokes with highly oriented microstructures. Fuel, 2012, 95, 400-406.	6.4	10
50	Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel Processing Technology, 2012, 93, 99-104.	7.2	45
51	Determination of crude oil incompatibility regions by ellipsometry. Fuel Processing Technology, 2012, 96, 16-21.	7.2	8
52	Microwave Frequency Tripler Based on a Microstrip Gap with Graphene. Journal of Electromagnetic Waves and Applications, 2011, 25, 1921-1929.	1.6	24
53	MILLIMETER WAVE MICROSTRIP MIXER BASED ON GRAPHENE. Progress in Electromagnetics Research, 2011, 118, 57-69.	4.4	42
54	High performance activated carbon for benzene/toluene adsorption from industrial wastewater. Journal of Hazardous Materials, 2011, 192, 1525-1532.	12.4	58

#	Article	IF	CITATIONS
55	A unified process for preparing mesophase and isotropic material from anthracene oil-based pitch. Fuel Processing Technology, 2011, 92, 421-427.	7.2	14
56	Synthesis of activated carbons by chemical activation of new anthracene oil-based pitches and their optimization by response surface methodology. Fuel Processing Technology, 2011, 92, 1987-1992.	7.2	13
57	Fractionation of a coal tar pitch by ultra-filtration, and characterization by size exclusion chromatography, UV-fluorescence and laser desorption-mass spectroscopy. Fuel, 2010, 89, 2953-2970.	6.4	34
58	Estimating molecular masses of petroleum-derived fractions: High mass (>2000u) materials in maltenes and asphaltenes from Maya crude oil. Journal of Chromatography A, 2010, 1217, 3804-3818.	3.7	31
59	Characterization of Maya Crude Oil Maltenes and Asphaltenes in Terms of Structural Parameters Calculated from Nuclear Magnetic Resonance (NMR) Spectroscopy and Laser Desorptionâ^'Mass Spectroscopy (LDâ^'MS). Energy & Fuels, 2010, 24, 3977-3989.	5.1	68
60	Isolation of Size Exclusion Chromatography Elution-Fractions of Coal and Petroleum-Derived Samples and Analysis by Laser Desorption Mass Spectrometry. Energy & Fuels, 2009, 23, 6003-6014.	5.1	32
61	Study on the Effect of Heat Treatment and Gasification on the Carbon Structure of Coal Chars and Metallurgical Cokes using Fourier Transform Raman Spectroscopy. Energy & Fuels, 2009, 23, 1651-1661.	5.1	61
62	Sample Contamination with NMP-oxidation Products and Byproduct-free NMP Removal from Sample Solutions. Energy & amp; Fuels, 2009, 23, 3008-3015.	5.1	43
63	Preparation of Low Toxicity Pitches by Thermal Oxidative Condensation of Anthracene Oil. Environmental Science & Technology, 2009, 43, 8126-8132.	10.0	30
64	Matrix-Iron Interactions in Carbon-Embedded Iron Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 4098-4102.	0.9	0
65	The effect of alumina surface activity on the properties of lignocellulose/pitch-Al2O3 composites. Journal of Analytical and Applied Pyrolysis, 2008, 82, 151-157.	5.5	6
66	Mesophase from Anthracene Oil-Based Pitches. Energy & amp; Fuels, 2008, 22, 4146-4150.	5.1	22
67	Characterization of Molecular Mass Ranges of Two Coal Tar Distillate Fractions (Creosote and) Tj ETQq1 1 0.784 Chromatography. Energy & Fuels, 2008, 22, 3275-3292.	314 rgBT 5.1	/Overlock 10 61
68	Characterization and Pyrolysis Behavior of Novel Anthracene Oil Derivatives. Energy & Fuels, 2008, 22, 4077-4086.	5.1	30
69	Calibration of Size-Exclusion Chromatography Columns with 1-Methyl-2-pyrrolidinone (NMP)/Chloroform Mixtures as Eluent: Applications to Petroleum-Derived Samples. Energy & Fuels, 2008, 22, 3265-3274.	5.1	44
70	Investigating the Formation Mechanism of Soot-like Materials Present in Blast Furnace Coke Samples. Energy & Fuels, 2008, 22, 3317-3325.	5.1	3
71	The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues. Journal of Hazardous Materials, 2007, 144, 400-405.	12.4	67
72	Thermal degradation of lignocellulosic materials treated with several acids. Journal of Analytical and Applied Pyrolysis, 2005, 74, 337-343.	5.5	27

#	Article	IF	CITATIONS
73	Lignocellulose/pitch based composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 649-657.	7.6	14
74	Improvement of the thermal stability of lignocellulosic materials by treatment with sulphuric acid and potassium hydroxide. Journal of Analytical and Applied Pyrolysis, 2004, 72, 131-139.	5.5	22
75	Reaction of the Ruthenium(II) Indenyl Complex [Ru(η5-C9H7){ΰ3(P,C,C)-PPh2(CH2CHCH2)}(PPh3)][PF6] with Terminal Alkynes. Mechanisms of 1-Alkyne to η1-Vinylidene Transformation and Kinetic Detection of Hemilability of the Allylphosphine Ligand. Organometallics, 2004, 23, 5127-5134.	2.3	36
76	Diastereoselective Synthesis of the Indenylruthenium(II) Complexes [Ru(η5-C9H7){κ3(P,C,C)-Ph2P(CH2CRCH2)}(PPh3)][PF6] (R = H, Me): Enantiofacial Coordination, Hemilabile Properties, and Diastereoselective Nucleophilic Additions to κ3(P,C,C)-Allylphosphine Ligands. Organometallics, 2004, 23, 2956-2966.	2.3	26
77	Formation of a Cyclobutylidene Ring:Â Intramolecular [2 + 2] Cycloaddition of Allyl and Vinylidene CC Bonds under Mild Conditions. Journal of the American Chemical Society, 2003, 125, 2386-2387.	13.7	65
78	Bond Activation by Electron Transfer in Indenyl Ruthenium(II) Complexes. The Electrochemical Reduction of [Ru(η5-C9H7)Cl(L)2] and [Ru(η5-C9H7)(L)2]+, L2 = COD, L = PPh3. Organometallics, 2003, 22, 3478-3484.	2.3	4
79	Catalytic Synthesis of Polynorbornene and Polynorbornadiene of Low Polydispersity Index by [Ru(l·5-C9H7)Cl(COD)] (COD = 1,5-Cyclooctadiene). Organometallics, 2002, 21, 5678-5680.	2.3	17
80	Synthesis and Reactivity of Indenyl Ruthenium(II) Complexes Containing the Labile Ligand 1,5-Cyclooctadiene (COD): Catalytic Activity of [Ru(η5-C9H7)Cl(COD)]. Organometallics, 2001, 20, 3762-3771.	2.3	61
81	Hydration of terminal alkynes to aldehydes in aqueous micellar solutions by ruthenium(II) catalysis; first anti-Markovnikov addition of water to propargylic alcohols. Tetrahedron Letters, 2001, 42, 8467-8470.	1.4	61