Haruhiko Asakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239051/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Communications Biology, 2022, 5, 78.	2.0	14
2	Human Ebp1 rescues the synthetic lethal growth of fission yeast cells lacking Cdb4 and Nup184. Genes To Cells, 2020, 25, 288-295.	0.5	0
3	Nuclear Envelope Proteins Modulating the Heterochromatin Formation and Functions in Fission Yeast. Cells, 2020, 9, 1908.	1.8	13
4	Transient Breakage of the Nucleocytoplasmic Barrier Controls Spore Maturation via Mobilizing the Proteasome Subunit Rpn11 in the Fission Yeast Schizosaccharomyces pombe. Journal of Fungi (Basel,) Tj ETQo	q0 0 0. ægBT	/Oværlock 10
5	Asymmetrical localization of Nup107-160 subcomplex components within the nuclear pore complex in fission yeast. PLoS Genetics, 2019, 15, e1008061.	1.5	22
6	Visualization of secretory cargo transport within the Golgi apparatus. Journal of Cell Biology, 2019, 218, 1602-1618.	2.3	63
7	Very-long-chain fatty acid elongase Elo2 rescues lethal defects associated with loss of the nuclear barrier function. Journal of Cell Science, 2019, 132, .	1.2	38
8	Estimation of GFP-Nucleoporin Amount Based on Fluorescence Microscopy. Methods in Molecular Biology, 2018, 1721, 105-115.	0.4	3
9	Lem2 is retained at the nuclear envelope through its interaction with Bqt4 in fission yeast. Genes To Cells, 2018, 23, 122-135.	0.5	30
10	Shelterin promotes tethering of late replication origins to telomeres for replicationâ€ŧiming control. EMBO Journal, 2018, 37, .	3.5	11
11	Microscopic Observation of Living Cells Stained with Fluorescent Probes. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot079848.	0.2	3
12	Spatial organization of the <i>Schizosaccharomyces pombe</i> genome within the nucleus. Yeast, 2017, 34, 55-66.	0.8	16
13	Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis. Frontiers in Cell and Developmental Biology, 2016, 4, 5.	1.8	17
14	Inner nuclear membrane protein Lem2 augments heterochromatin formation in response to nutritional conditions. Genes To Cells, 2016, 21, 812-832.	0.5	44
15	A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. Journal of Molecular Biology, 2016, 428, 3885-3902.	2.0	52
16	Histone H4 acetylation required for chromatin decompaction during DNA replication. Scientific Reports, 2015, 5, 12720.	1.6	31
17	Biased assembly of the nuclear pore complex is required for somatic and germline nuclear differentiation in <i>Tetrahymena</i> . Journal of Cell Science, 2015, 128, 1812-23.	1.2	24
18	Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1â€dependent replication checkpoint nathway. Genes To Cells, 2015, 20, 160-172	0.5	13

HARUHIKO ASAKAWA

#	Article	IF	CITATIONS
19	Nup132 modulates meiotic spindle attachment in fission yeast by regulating kinetochore assembly. Journal of Cell Biology, 2015, 211, 295-308.	2.3	13
20	Highly condensed chromatins are formed adjacent to subtelomeric and decondensed silent chromatin in fission yeast. Nature Communications, 2015, 6, 7753.	5.8	64
21	Uncleavable Nup98–Nup96 is functional in the fission yeast <i>Schizosaccharomyces pombe</i> . FEBS Open Bio, 2015, 5, 508-514.	1.0	5
22	Characterization of nuclear pore complex components in fission yeast <i>Schizosaccharomyces pombe</i> . Nucleus, 2014, 5, 149-162.	0.6	53
23	A method of correlative light and electron microscopy for yeast cells. Micron, 2014, 61, 53-61.	1.1	14
24	Monoclonal Antibodies Recognize Gly-Leu-Phe-Gly Repeat of Nucleoporin Nup98 of <i>Tetrahymena</i> , Yeasts, and Humans. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2013, 32, 81-90.	0.8	11
25	Inner nuclear membrane protein Ima1 is dispensable for intranuclear positioning of centromeres. Genes To Cells, 2011, 16, 1000-1011.	0.5	63
26	Physical breakdown of the nuclear envelope is not necessary for breaking its barrier function. Nucleus, 2011, 2, 523-526.	0.6	12
27	Nuclear translocation of RanGAP1 coincides with virtual nuclear envelope breakdown in fission yeast meiosis. Communicative and Integrative Biology, 2011, 4, 312-314.	0.6	7
28	Virtual Breakdown of the Nuclear Envelope in Fission Yeast Meiosis. Current Biology, 2010, 20, 1919-1925.	1.8	61
29	Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms. Genes To Cells, 2010, 15, 661-669.	0.5	46
30	Role of Septins in the Orientation of Forespore Membrane Extension during Sporulation in Fission Yeast. Molecular and Cellular Biology, 2010, 30, 2057-2074.	1.1	38
31	In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. Journal of Cell Biology, 2010, 190, 223-231.	2.3	65
32	Live-Cell Fluorescence Imaging of Meiotic Chromosome Dynamics in Schizosaccharomyces pombe. Methods in Molecular Biology, 2009, 558, 53-64.	0.4	14
33	Live Observation of Forespore Membrane Formation in Fission Yeast. Molecular Biology of the Cell, 2008, 19, 3544-3553.	0.9	39
34	Reconstruction of the kinetochore: a prelude to meiosis. Cell Division, 2007, 2, 17.	1.1	7
35	Reconstruction of the Kinetochore during Meiosis in Fission Yeast Schizosaccharomyces pombe. Molecular Biology of the Cell, 2006, 17, 5173-5184.	0.9	37
36	Dissociation of the Nuf2-Ndc80 Complex Releases Centromeres from the Spindle-Pole Body during Meiotic Prophase in Fission Yeast. Molecular Biology of the Cell, 2005, 16, 2325-2338.	0.9	73