
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature, 1994, 371, 674-680.	27.8	592
2	HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nature Medicine, 2002, 8, 225-232.	30.7	299
3	Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nature Medicine, 1999, 5, 643-650.	30.7	288
4	Native HIV-1 Tat Protein Targets Monocyte-Derived Dendritic Cells and Enhances Their Maturation, Function, and Antigen-Specific T Cell Responses. Journal of Immunology, 2002, 168, 197-206.	0.8	158
5	Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P). Vaccine, 2001, 19, 2862-2877.	3.8	135
6	Contribution of Nonneutralizing Vaccine-Elicited Antibody Activities to Improved Protective Efficacy in Rhesus Macaques Immunized with Tat/Env Compared with Multigenic Vaccines. Journal of Immunology, 2009, 182, 3718-3727.	0.8	128
7	Activation of Matrix-Metalloproteinase-2 and Membrane-Type-1-Matrix-Metalloproteinase in Endothelial Cells and Induction of Vascular Permeability In Vivo by Human Immunodeficiency Virus-1 Tat Protein and Basic Fibroblast Growth Factor. Molecular Biology of the Cell, 2001, 12, 2934-2946.	2.1	110
8	HIV-1 Tat Protein Modulates the Generation of Cytotoxic T Cell Epitopes by Modifying Proteasome Composition and Enzymatic Activity. Journal of Immunology, 2004, 173, 3838-3843.	0.8	101
9	Therapeutic Immunization with HIV-1 Tat Reduces Immune Activation and Loss of Regulatory T-Cells and Improves Immune Function in Subjects on HAART. PLoS ONE, 2010, 5, e13540.	2.5	94
10	A Replication-Competent Adenovirus-Human Immunodeficiency Virus (Ad-HIV) tat and Ad-HIV env Priming/Tat and Envelope Protein Boosting Regimen Elicits Enhanced Protective Efficacy against Simian/Human Immunodeficiency Virus SHIV 89.6P Challenge in Rhesus Macaques. Journal of Virology, 2007, 81, 3414-3427.	3.4	80
11	Sequence Conservation and Antibody Crossâ€Recognition of Clade B Human Immunodeficiency Virus (HIV) Type 1 Tat Protein in HIVâ€1–Infected Italians, Ugandans, and South Africans. Journal of Infectious Diseases, 2003, 188, 1171-1180.	4.0	75
12	Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys. Vaccine, 2004, 22, 3258-3269.	3.8	70
13	Alpha Interferon Inhibits Human Herpesvirus 8 (HHV-8) Reactivation in Primary Effusion Lymphoma Cells and Reduces HHV-8 Load in Cultured Peripheral Blood Mononuclear Cells. Journal of Virology, 1999, 73, 4029-4041.	3.4	70
14	HIV-1 Tat Addresses Dendritic Cells to Induce a Predominant Th1-Type Adaptive Immune Response That Appears Prevalent in the Asymptomatic Stage of Infection. Journal of Immunology, 2009, 182, 2888-2897.	0.8	65
15	Efficient mucosal delivery of the HIV-1 Tat protein using the synthetic lipopeptide MALP-2 as adjuvant. European Journal of Immunology, 2003, 33, 1548-1556.	2.9	64
16	Candidate HIV-1 Tat vaccine development: from basic science to clinical trials. Aids, 2006, 20, 2245-2261.	2.2	61
17	Identification, molecular cloning and functional characterization of NKp46 and NKp30 natural cytotoxicity receptors inMacaca fascicularis NK cells. European Journal of Immunology, 2001, 31, 3546-3556.	2.9	60
18	HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies. PLoS ONE, 2012, 7, e48781.	2.5	56

#	Article	IF	CITATIONS
19	HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirology, 2015, 12, 33.	2.0	55
20	Challenges in HIV Vaccine Research for Treatment and Prevention. Frontiers in Immunology, 2014, 5, 417.	4.8	52
21	SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine. Journal of Medical Primatology, 2003, 29, 193-208.	0.6	51
22	Efficient systemic and mucosal responses against the HIV-1 Tat protein by prime/boost vaccination using the lipopeptide MALP-2 as adjuvant. Vaccine, 2006, 24, 2049-2056.	3.8	50
23	Intracellular HIV-1 Tat protein represses constitutive LMP2 transcription increasing proteasome activity by interfering with the binding of IRF-1 to STAT1. Biochemical Journal, 2006, 396, 371-380.	3.7	50
24	Qualitative T-Helper Responses to Multiple Viral Antigens Correlate with Vaccine-Induced Immunity to Simian/Human Immunodeficiency Virus Infection. Journal of Virology, 2004, 78, 3333-3342.	3.4	49
25	The Tat protein broadens T cell responses directed to the HIV-1 antigens Gag and Env: Implications for the design of new vaccination strategies against AIDS. Vaccine, 2008, 26, 727-737.	3.8	49
26	The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+T-cell decay and viral load, and with delay of disease progression: results of a 3-year cohort study. Retrovirology, 2014, 11, 49.	2.0	48
27	HIV-1 Infection of Primary Human Neuroblasts. Virology, 1995, 210, 221-225.	2.4	43
28	Enhancement of Human Immunodeficiency Virus (HIV) Replication in Human Monocytes by Low Titres of Anti-HIV Antibodies in Vitro. Scandinavian Journal of Immunology, 1989, 30, 425-434.	2.7	42
29	Molecular and Functional Characterization of NKG2D, NKp80, and NKG2C Triggering NK Cell Receptors in Rhesus and Cynomolgus Macaques: Monitoring of NK Cell Function during Simian HIV Infection. Journal of Immunology, 2005, 174, 5695-5705.	0.8	41
30	Comparative study of Tat vaccine regimens in Mauritian cynomolgus and Indian rhesus macaques: Influence of Mauritian MHC haplotypes on susceptibility/resistance to SHIV89.6P infection. Vaccine, 2008, 26, 3312-3321.	3.8	40
31	Comparison of early plasma RNA loads in different macaque species and the impact of different routes of exposure on SIV/SHIV infection. Journal of Medical Primatology, 2001, 30, 207-214.	0.6	39
32	Novel biocompatible anionic polymeric microspheres for the delivery of the HIV-1 Tat protein for vaccine application. Vaccine, 2004, 22, 2910-2924.	3.8	39
33	HIV-1 Tat affects the programming and functionality of human CD8+ T cells by modulating the expression of T-box transcription factors. Aids, 2014, 28, 1729-1738.	2.2	39
34	HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. International Reviews of Immunology, 2009, 28, 285-334.	3.3	38
35	HIV-1 Tat-Based Vaccines: From Basic Science to Clinical Trials. DNA and Cell Biology, 2002, 21, 599-610.	1.9	35
36	The HIV-1 Tat Protein Induces the Activation of CD8+ T Cells and Affects In Vivo the Magnitude and Kinetics of Antiviral Responses. PLoS ONE, 2013, 8, e77746.	2.5	35

AURELIO CAFARO

#	Article	IF	CITATIONS
37	Transcription Pattern of Human Herpesvirus 8 Open Reading Frame K3 in Primary Effusion Lymphoma and Kaposi's Sarcoma. Journal of Virology, 2001, 75, 7161-7174.	3.4	34
38	Virus-induced cytokines regulate circulating lymphocyte levels during primary SIV infections. International Immunology, 1997, 9, 703-712.	4.0	33
39	HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4+ T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial. Retrovirology, 2016, 13, 34.	2.0	33
40	The HIV-1 Tat protein affects human CD4+ T-cell programing and activation, and favors the differentiation of naÃ ⁻ ve CD4+ T cells. Aids, 2018, 32, 575-581.	2.2	33
41	Nonstructural HIV proteins as targets for prophylactic or therapeutic vaccines. Current Opinion in Biotechnology, 2004, 15, 543-556.	6.6	32
42	Problems and emerging approaches in HIV/AIDS vaccine development. Expert Opinion on Emerging Drugs, 2007, 12, 23-48.	2.4	31
43	Impact of Viral Dose and Major Histocompatibility Complex Class IB Haplotype on Viral Outcome in Mauritian Cynomolgus Monkeys Vaccinated with Tat upon Challenge with Simian/Human Immunodeficiency Virus SHIV89.6P. Journal of Virology, 2010, 84, 8953-8958.	3.4	30
44	Mucosal delivery of the human immunodeficiency virus-1 Tat protein in mice elicits systemic neutralizing antibodies, cytotoxic T lymphocytes and mucosal IgA. Vaccine, 2003, 21, 3972-3981.	3.8	28
45	Human CD38 interferes with HIVâ€l fusion through a sequence homologous to the V3 loop of the viral envelope glycoprotein gp120 FASEB Journal, 2003, 17, 1-20.	0.5	28
46	Immunization with low doses of HIV-1 tat DNA delivered by novel cationic block copolymers induces CTL responses against Tat. Vaccine, 2003, 21, 1103-1111.	3.8	27
47	Modulation of Th1/Th2 immune responses to HIV-1 Tat by new pro-GSH molecules. Vaccine, 2011, 29, 6823-6829.	3.8	26
48	Enhanced cellular immunity to SIV Gag following co-administration of adenoviruses encoding wild-type or mutant HIV Tat and SIV Gag. Virology, 2005, 342, 1-12.	2.4	24
49	Surface-bound Tat inhibits antigen-specific CD8+ T-cell activation in an integrin-dependent manner. Aids, 2014, 28, 2189-2200.	2.2	24
50	Continued Decay of HIV Proviral DNA Upon Vaccination With HIV-1 Tat of Subjects on Long-Term ART: An 8-Year Follow-Up Study. Frontiers in Immunology, 2019, 10, 233.	4.8	23
51	NKp44 expression, phylogenesis and function in non-human primate NK cells. International Immunology, 2009, 21, 245-255.	4.0	22
52	HIV-1 Tat vaccines. Virus Research, 2001, 82, 91-101.	2.2	21
53	Characterization of immune responses elicited in mice by intranasal co-immunization with HIV-1 Tat, gp140 l²V2Env and/or SIV Gag proteins and the nontoxicogenic heat-labile Escherichia coli enterotoxin. Vaccine, 2008, 26, 1214-1227.	3.8	20
54	A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study. Vaccine, 2011, 29, 2918-2932.	3.8	20

#	Article	IF	CITATIONS
55	Development of a novel AIDS vaccine: the HIV-1 transactivator of transcription protein vaccine. Expert Opinion on Biological Therapy, 2015, 15, 13-29.	3.1	19
56	Viral outcome of simian–human immunodeficiency virus SHIV-89.6P adapted to cynomolgus monkeys. Archives of Virology, 2008, 153, 463-472.	2.1	18
57	Containment of Infection in Tat Vaccinated Monkeys After Rechallenge with a Higher Dose of SHIV89.6P _{cy243} . Viral Immunology, 2009, 22, 117-124.	1.3	18
58	Association between different anti-Tat antibody isotypes and HIV disease progression: data from an African cohort. BMC Infectious Diseases, 2016, 16, 344.	2.9	18
59	Characteristics of the CD8+ lymphocytosis during primary simian immunodeficiency virus infections. Aids, 1997, 11, 959-968.	2.2	17
60	Vaccines based on the native HIV Tat protein and on the combination of Tat and the structural HIV protein variant ΔV2 Env. Microbes and Infection, 2005, 7, 1392-1399.	1.9	17
61	Enhanced follicular dendritic cell function in lymph nodes of simian immunodeficiency virus-infected macaques: Consequences for pathogenesis. European Journal of Immunology, 1997, 27, 3214-3222.	2.9	16
62	An Attenuated Herpes Simplex Virus Type 1 (HSV1) Encoding the HIV-1 Tat Protein Protects Mice from a Deadly Mucosal HSV1 Challenge. PLoS ONE, 2014, 9, e100844.	2.5	15
63	Systemic immunodominant CD8 responses with an effector-like phenotype are induced by intravaginal immunization with attenuated HSV vectors expressing HIV Tat and mediate protection against HSV infection. Vaccine, 2016, 34, 2216-2224.	3.8	14
64	Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease. Vaccines, 2019, 7, 99.	4.4	14
65	Innovative Approaches to Develop Prophylactic and Therapeutic Vaccines against HIV/AIDS. Advances in Experimental Medicine and Biology, 2009, 655, 189-242.	1.6	13
66	Viral DNA Burden and Decline in Percentage of CD4-Positive Cells in the Lymphoid Compartment of SIV-Infected Macaques. AIDS Research and Human Retroviruses, 1994, 10, 1269-1277.	1.1	12
67	Circular viral DNA detection and junction sequence analysis from PBMC of SHIV-infected cynomolgus monkeys with undetectable virus plasma RNA. Virology, 2004, 324, 531-539.	2.4	12
68	HIV therapeutic vaccines aimed at intensifying combination antiretroviral therapy. Expert Review of Vaccines, 2020, 19, 71-84.	4.4	12
69	HIV-1 Tat Protein Enters Dysfunctional Endothelial Cells via Integrins and Renders Them Permissive to Virus Replication. International Journal of Molecular Sciences, 2021, 22, 317.	4.1	12
70	Candidate HIV-1 gp140î"V2, Gag and Tat vaccines protect against experimental HIV-1/MuLV challenge. Vaccine, 2007, 25, 6882-6890.	3.8	11
71	Anti-Tat immunity defines CD4+ T-cell dynamics in people living with HIV on long-term cART EBioMedicine, 2021, 66, 103306.	6.1	11
72	Phenotype of chronic lymphocytic leukemia (CLL) B-Cells. Blut, 1987, 54, 43-49.	1.2	10

#	Article	IF	CITATIONS
73	Effect of MHC Haplotype on Immune Response upon Experimental SHIVSF162P4cy Infection of Mauritian Cynomolgus Macaques. PLoS ONE, 2014, 9, e93235.	2.5	10
74	Immune response and protection by DNA vaccines expressing antigen 85B ofMycobacterium tuberculosis. FEMS Microbiology Letters, 2006, 262, 210-215.	1.8	9
75	Innate anti-viral immunity is associated with the protection elicited by the simian immunodeficiency virus (SIV) live attenuated virus vaccine in cynomolgus monkeys. Medical Science Monitor, 2006, 12, BR330-40.	1.1	9
76	HIV-1 Tat protein vaccination in mice infected with Mycobacterium tuberculosis is safe, immunogenic and reduces bacterial lung pathology. BMC Infectious Diseases, 2016, 16, 442.	2.9	8
77	Influence of MHC class I and II haplotypes on the experimental infection of Mauritian cynomolgus macaques with SHIV _{SF162P4cy} . Tissue Antigens, 2012, 80, 36-45.	1.0	7
78	Non-neutralizing antibodies and vaccine-induced protection. Retrovirology, 2006, 3, S26.	2.0	6
79	Building collaborative networks for HIV/AIDS vaccine development: the AVIP experience. Seminars in Immunopathology, 2006, 28, 289-301.	4.0	6
80	New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Archives of Virology, 2021, 166, 2955-2974.	2.1	6
81	Effects of different routes of administration on the immunogenicity of the Tat protein and a Tat-derived peptide. Human Vaccines and Immunotherapeutics, 2015, 11, 1489-1493.	3.3	4
82	Old and New Concepts and Strategies in HIV Vaccinology: A Report from a Workshop held in Rome on 17 June 2016. Journal of AIDS & Clinical Research, 2016, 7, .	0.5	4
83	"cART intensification by the HIV-1 Tat B clade vaccine: progress to phase III efficacy studies― Expert Review of Vaccines, 2017, 17, 1-12.	4.4	4
84	Biocompatible Anionic Polymeric Microspheres as Priming Delivery System for Effetive HIV/AIDS Tat-Based Vaccines. PLoS ONE, 2014, 9, e111360.	2.5	4
85	The Tat Protein of HIV-1 Prevents the Loss of HSV-Specific Memory Adaptive Responses and Favors the Control of Viral Reactivation. Vaccines, 2020, 8, 274.	4.4	3
86	Induction of Antibodies and T Cell Responses by a Recombinant Influenza Virus Carrying an HIV-1 TatΔ51–59Protein in Mice. BioMed Research International, 2014, 2014, 1-10.	1.9	2
87	Relevance of Monoclonal Antibody Phenotyping and of Genetic Studies in the Classification of T-Cell Leukemia/Lymphoma. Oncology Research and Treatment, 1987, 10, 134-136.	1.2	1
88	T-helper phenotype chronic lymphocytic leukemia (Thp-CLL): Characterization of an Italian case with particular biological findings. Blut, 1987, 54, 289-298.	1.2	1
89	NOVEL STRATEGIES TOWARD THE DEVELOPMENT OF AN EFFECTIVE VACCINE TO PREVENT HUMAN IMMUNODEFICIENCY VIRUS INFECTION OR ACQUIRED IMMUNODEFICIENCY VIRUS*. Clinical Research and Regulatory Affairs, 2001, 18, 293-327.	2.1	1
90	HIV-1 therapeutic vaccines in clinical development to intensify or replace antiretroviral therapy: the promising results of the Tat vaccine. Expert Review of Vaccines, 0, , 1-11.	4.4	1