Joachim Kopka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2238973/publications.pdf Version: 2024-02-01

Іоленім Коркл

#	Article	IF	CITATIONS
1	Riboswitch-mediated inducible expression of an astaxanthin biosynthetic operon in plastids. Plant Physiology, 2022, 188, 637-652.	4.8	20
2	Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C3 and C4 plants. Nature Plants, 2022, 8, 78-91.	9.3	49
3	The Sporisorium reilianum Effector Vag2 Promotes Head Smut Disease via Suppression of Plant Defense Responses. Journal of Fungi (Basel, Switzerland), 2022, 8, 498.	3.5	1
4	Authenticity assessment of commercial bakery products with chia, flax and sesame seeds: Application of targeted and untargeted metabolomics results from seeds and lab-scale cookies. Food Control, 2022, 140, 109114.	5.5	1
5	Acclimatisation of guard cell metabolism to longâ€ŧerm salinity. Plant, Cell and Environment, 2021, 44, 870-884.	5.7	11
6	Cell wall modification by the xyloglucan endotransglucosylase/hydrolase <scp>XTH19</scp> influences freezing tolerance after cold and subâ€zero acclimation. Plant, Cell and Environment, 2021, 44, 915-930.	5.7	43
7	Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Scientific Reports, 2021, 11, 2410.	3.3	19
8	Global mapping of protein–metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. Communications Biology, 2021, 4, 181.	4.4	32
9	Integration of relative metabolomics and transcriptomics time-course data in a metabolic model pinpoints effects of ribosome biogenesis defects on Arabidopsis thaliana metabolism. Scientific Reports, 2021, 11, 4787.	3.3	5
10	Unravelling Differences in Candidate Genes for Drought Tolerance in Potato (Solanum tuberosum L.) by Use of New Functional Microsatellite Markers. Genes, 2021, 12, 494.	2.4	11
11	Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. Frontiers in Plant Science, 2021, 12, 656683.	3.6	15
12	Physiological and molecular attributes contribute to high night temperature tolerance in cereals. Plant, Cell and Environment, 2021, 44, 2034-2048.	5.7	16
13	The Impact of Metabolic Scion–Rootstock Interactions in Different Grapevine Tissues and Phloem Exudates. Metabolites, 2021, 11, 349.	2.9	10
14	Univariate statistical analysis of gas chromatography – mass spectrometry fingerprints analyses. Chemical Data Collections, 2021, 33, 100719.	2.3	1
15	Transcriptional, hormonal, and metabolic changes in susceptible grape berries under powdery mildew infection. Journal of Experimental Botany, 2021, 72, 6544-6569.	4.8	24
16	Homologs of Circadian Clock Proteins Impact the Metabolic Switch Between Light and Dark Growth in the Cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Plant Science, 2021, 12, 675227.	3.6	7
17	Genome-Wide Approach to Identify Quantitative Trait Loci for Drought Tolerance in Tetraploid Potato (Solanum tuberosum L.). International Journal of Molecular Sciences, 2021, 22, 6123.	4.1	9
18	Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 6160.	4.1	10

#	Article	IF	CITATIONS
19	Assessing Dynamic Changes of Taste-Related Primary Metabolism During Ripening of Durian Pulp Using Metabolomic and Transcriptomic Analyses. Frontiers in Plant Science, 2021, 12, 687799.	3.6	16
20	Plant chromatin, metabolism and development – an intricate crosstalk. Current Opinion in Plant Biology, 2021, 61, 102002.	7.1	19
21	Characterization of the Heat-Stable Proteome during Seed Germination in Arabidopsis with Special Focus on LEA Proteins. International Journal of Molecular Sciences, 2021, 22, 8172.	4.1	12
22	Metabolic Profiling and Metabolite Correlation Network Analysis Reveal That Fusarium solani Induces Differential Metabolic Responses in Lotus japonicus and Lotus tenuis against Severe Phosphate Starvation. Journal of Fungi (Basel, Switzerland), 2021, 7, 765.	3.5	7
23	Establishment of a GCâ€MSâ€based ¹³ Câ€positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. Plant Journal, 2021, 108, 1213-1233.	5.7	18
24	Ion Homeostasis and Metabolome Analysis of Arabidopsis 14-3-3 Quadruple Mutants to Salt Stress. Frontiers in Plant Science, 2021, 12, 697324.	3.6	4
25	Differentiation of the High Night Temperature Response in Leaf Segments of Rice Cultivars with Contrasting Tolerance. International Journal of Molecular Sciences, 2021, 22, 10451.	4.1	2
26	\$\${ext{COSNet}}_i\$\$: ComplexOme-Structural Network Interpreter used to study spatial enrichment in metazoan ribosomes. BMC Bioinformatics, 2021, 22, 605.	2.6	2
27	Cysteine and Methionine Biosynthetic Enzymes Have Distinct Effects on Seed Nutritional Quality and on Molecular Phenotypes Associated With Accumulation of a Methionine-Rich Seed Storage Protein in Rice. Frontiers in Plant Science, 2020, 11, 1118.	3.6	8
28	Can Metabolite- and Transcript-Based Selection for Drought Tolerance in Solanum tuberosum Replace Selection on Yield in Arid Environments?. Frontiers in Plant Science, 2020, 11, 1071.	3.6	8
29	Separation and Paired Proteome Profiling of Plant Chloroplast and Cytoplasmic Ribosomes. Plants, 2020, 9, 892.	3.5	12
30	Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nature Plants, 2020, 6, 1031-1043.	9.3	33
31	Season Affects Yield and Metabolic Profiles of Rice (Oryza sativa) under High Night Temperature Stress in the Field. International Journal of Molecular Sciences, 2020, 21, 3187.	4.1	21
32	Systematic Review of Plant Ribosome Heterogeneity and Specialization. Frontiers in Plant Science, 2020, 11, 948.	3.6	60
33	Untargeted metabolomics as a hypothesis-generation tool in plant protection product discovery: Highlighting the potential of trehalose and glycerol metabolism of fungal conidiospores as novel targets. Metabolomics, 2020, 16, 79.	3.0	5
34	Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites, 2020, 10, 121.	2.9	35
35	Multiplexed Profiling and Data Processing Methods to Identify Temperature-Regulated Primary Metabolites Using Gas Chromatography Coupled to Mass Spectrometry. Methods in Molecular Biology, 2020, 2156, 203-239.	0.9	16
36	Underground isoleucine biosynthesis pathways in E. coli. ELife, 2020, 9, .	6.0	19

#	Article	IF	CITATIONS
37	Molecular signatures associated with increased freezing tolerance due to low temperature memory in <i>Arabidopsis</i> . Plant, Cell and Environment, 2019, 42, 854-873.	5.7	89
38	lonâ€dependent metabolic responses of <i>Vicia faba</i> L. to salt stress. Plant, Cell and Environment, 2019, 42, 295-309.	5.7	22
39	Metabolic responses of rice source and sink organs during recovery from combined drought and heat stress in the field. GigaScience, 2019, 8, .	6.4	14
40	Effect of Senescence Phenotypes and Nitrate Availability on Wheat Leaf Metabolome during Grain Filling. Agronomy, 2019, 9, 305.	3.0	6
41	Discovery of food identity markers by metabolomics and machine learning technology. Scientific Reports, 2019, 9, 9697.	3.3	56
42	Unravelling the Metabolic and Hormonal Machinery During Key Steps of Somatic Embryogenesis: A Case Study in Coffee. International Journal of Molecular Sciences, 2019, 20, 4665.	4.1	18
43	The fungal endophyte Fusarium solani provokes differential effects on the fitness of two Lotus species. Plant Physiology and Biochemistry, 2019, 144, 100-109.	5.8	12
44	Metabolomics Identifies a Biomarker Revealing In Vivo Loss of Functional Î ² -Cell Mass Before Diabetes Onset. Diabetes, 2019, 68, 2272-2286.	0.6	28
45	Metabolic responses of rice cultivars with different tolerance to combined drought and heat stress under field conditions. GigaScience, 2019, 8, .	6.4	52
46	Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Scientific Reports, 2019, 9, 2289.	3.3	51
47	Highly Resolved Systems Biology to Dissect the Etioplast-to-Chloroplast Transition in Tobacco Leaves. Plant Physiology, 2019, 180, 654-681.	4.8	51
48	Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information?. Frontiers in Plant Science, 2019, 10, 106.	3.6	63
49	Focus Issue Editorial: Synthetic Biology. Plant Physiology, 2019, 179, 772-774.	4.8	4
50	Imbalanced Regulation of Fungal Nutrient Transports According to Phosphate Availability in a Symbiocosm Formed by Poplar, Sorghum, and Rhizophagus irregularis. Frontiers in Plant Science, 2019, 10, 1617.	3.6	23
51	Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Molecular Nutrition and Food Research, 2019, 63, e1800384.	3.3	173
52	The ironâ€stress activated RNA 1 (IsaR1) coordinates osmotic acclimation and iron starvation responses in the cyanobacterium <i>Synechocystis</i> sp. PCC 6803. Environmental Microbiology, 2018, 20, 2757-2768.	3.8	15
53	Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs. Plant Physiology, 2018, 176, 2251-2276.	4.8	39
54	Comprehensive Metabolomics Studies of Plant Developmental Senescence. Methods in Molecular Biology, 2018, 1744, 339-358.	0.9	19

#	Article	IF	CITATIONS
55	Primed primary metabolism in systemic leaves: a functional systems analysis. Scientific Reports, 2018, 8, 216.	3.3	64
56	Editorial overview: Plant synthetic and systems biology. Current Opinion in Biotechnology, 2018, 49, viii-xi.	6.6	6
57	Metabolite and transcript markers for the prediction of potato drought tolerance. Plant Biotechnology Journal, 2018, 16, 939-950.	8.3	68
58	The Synechocystis sp. PCC 6803 Genome Encodes Up to Four 2-Phosphoglycolate Phosphatases. Frontiers in Plant Science, 2018, 9, 1718.	3.6	7
59	Oviposition by Spodoptera exigua on Solanum dulcamara Alters the Plant's Response to Herbivory and Impairs Larval Performance. International Journal of Molecular Sciences, 2018, 19, 4008.	4.1	12
60	Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species. Advances in Experimental Medicine and Biology, 2018, 1081, 81-98.	1.6	16
61	Acquisition of Volatile Compounds by Gas Chromatography–Mass Spectrometry (GC-MS). Methods in Molecular Biology, 2018, 1778, 225-239.	0.9	20
62	<i>NLR</i> Mutations Suppressing Immune Hybrid Incompatibility and Their Effects on Disease Resistance. Plant Physiology, 2018, 177, 1152-1169.	4.8	21
63	<i>Polyamine oxidase 5</i> lossâ€ofâ€function mutations in <i>Arabidopsis thaliana</i> trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell and Environment, 2017, 40, 527-542.	5.7	66
64	Impact of seasonal warming on overwintering and spring phenology of blackcurrant. Environmental and Experimental Botany, 2017, 140, 96-109.	4.2	21
65	Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnology for Biofuels, 2017, 10, 56.	6.2	64
66	Isolation and characterization of three new PGPR and their effects on the growth of <i>Arabidopsis</i> and <i>Datura</i> plants. Journal of Plant Interactions, 2017, 12, 1-6.	2.1	45
67	Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. Plant Journal, 2017, 92, 129-146.	5.7	40
68	Metabolic Flexibility Underpins Growth Capabilities of the Fastest Growing Alga. Current Biology, 2017, 27, 2559-2567.e3.	3.9	34
69	Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity―and toleranceâ€related profiles. Plant, Cell and Environment, 2017, 40, 121-137.	5.7	54
70	Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics, 2017, 18, 731.	2.8	68
71	Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply. Frontiers in Plant Science, 2017, 8, 2048.	3.6	42
72	Rapid in situ 13C tracing of sucrose utilization in Arabidopsis sink and source leaves. Plant Methods, 2017, 13, 87.	4.3	16

#	Article	IF	CITATIONS
73	A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. ELife, 2016, 5, .	6.0	148
74	Editorial: Metabolome Informatics and Statistics: Current State and Emerging Trends. Frontiers in Bioengineering and Biotechnology, 2016, 4, 63.	4.1	3
75	Global Metabolic Profiling of Arabidopsis Polyamine Oxidase 4 (AtPAO4) Loss-of-Function Mutants Exhibiting Delayed Dark-Induced Senescence. Frontiers in Plant Science, 2016, 7, 173.	3.6	41
76	Functional specialization of one copy of glutamine phosphoribosyl pyrophosphate amidotransferase in ureide production from symbiotically fixed nitrogen in <i>Phaseolus vulgaris</i> . Plant, Cell and Environment, 2016, 39, 1767-1779.	5.7	12
77	Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 2016, 91, 1118-1133.	10.4	388
78	Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition. Journal of Experimental Botany, 2016, 67, 2675-2687.	4.8	10
79	Macromolecular recognition directs calcium ions to coccolith mineralization sites. Science, 2016, 353, 590-593.	12.6	86
80	The drought response of potato reference cultivars with contrasting tolerance. Plant, Cell and Environment, 2016, 39, 2370-2389.	5.7	66
81	CyAbrB2 Contributes to the Transcriptional Regulation of Low CO ₂ Acclimation in <i>Synechocystis</i> sp. PCC 6803. Plant and Cell Physiology, 2016, 57, 2232-2243.	3.1	37
82	Extrafloral nectar secretion from wounds of Solanum dulcamara. Nature Plants, 2016, 2, 16056.	9.3	22
83	Salt stress responses in a geographically diverse collection of Eutrema/Thellungiella spp. accessions. Functional Plant Biology, 2016, 43, 590.	2.1	17
84	Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 2016, 9, 89.	6.2	49
85	Can cyanobacteria serve as a model of plant photorespiration? – a comparative meta-analysis of metabolite profiles. Journal of Experimental Botany, 2016, 67, 2941-2952.	4.8	20
86	Metabolite Profiling Reveals Sensitivity-Dependent Metabolic Shifts in Rice (Oryza Sativa L.) Cultivars under High Night Temperature Stress. Procedia Environmental Sciences, 2015, 29, 72.	1.4	4
87	Symbiosis dependent accumulation of primary metabolites in arbuscule-containing cells. BMC Plant Biology, 2015, 15, 234.	3.6	17
88	Integrative "omic―analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa â€~Korona'. Frontiers in Plant Science, 2015, 6, 826.	3.6	17
89	COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics, 2015, 11, 1587-1597.	3.0	140
90	Integrated Transcriptomic and Metabolomic Characterization of the Low-Carbon Response Using an <i>ndhR</i> Mutant of <i>Synechocystis</i> sp. PCC 6803. Plant Physiology, 2015, 169, 1540-1556.	4.8	57

#	Article	IF	CITATIONS
91	Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Journal of Experimental Botany, 2015, 66, 1769-1785.	4.8	144
92	Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Science, 2015, 233, 107-115.	3.6	102
93	Identification of primary and secondary metabolites with phosphorus statusâ€dependent abundance in <scp><i>A</i></scp> <i>rabidopsis</i> , and of the transcription factor <scp>PHR</scp> 1 as a major regulator of metabolic changes during phosphorus limitation. Plant, Cell and Environment, 2015, 38, 172-187.	5.7	196
94	Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling. Journal of Experimental Botany, 2015, 66, 1397-1411.	4.8	35
95	Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant, Cell and Environment, 2015, 38, 2171-2192.	5.7	164
96	Assessment of drought tolerance and its potential yield penalty in potato. Functional Plant Biology, 2015, 42, 655.	2.1	26
97	Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biology, 2015, 13, 28.	3.8	34
98	High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner. Journal of Experimental Botany, 2015, 66, 6385-6397.	4.8	86
99	Integrated analysis of engineered carbon limitation in a quadruple CO2/HCO3uptake mutant of Synechocystis sp. PCC 6803. Plant Physiology, 2015, 169, pp.01289.2015.	4.8	20
100	Sugar Starvation of Rice Anthers is a Factor in Reproductive Failure under Heat and Drought Stress, as shown by Metabolite and Transcript Profiling. Procedia Environmental Sciences, 2015, 29, 70-71.	1.4	0
101	Effects of Inorganic Carbon Limitation on the Metabolome of the Synechocystis sp. PCC 6803 Mutant Defective in gInB Encoding the Central Regulator PII of Cyanobacterial C/N Acclimation. Metabolites, 2014, 4, 232-247.	2.9	27
102	REIL proteins ofArabidopsis thalianainteract in yeast-2-hybrid assays with homologs of the yeast Rlp24, Rpl24A, Rlp24B, Arx1, and Jjj1 proteins. Plant Signaling and Behavior, 2014, 9, e28224.	2.4	8
103	Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in <i>Arabidopsis</i> . Biochemical Journal, 2014, 463, 309-317.	3.7	33
104	Arabidopsis thaliana Glyoxalase 2-1 Is Required during Abiotic Stress but Is Not Essential under Normal Plant Growth. PLoS ONE, 2014, 9, e95971.	2.5	39
105	Quantification of Stable Isotope Label in Metabolites via Mass Spectrometry. Methods in Molecular Biology, 2014, 1056, 213-223.	0.9	20
106	Light modulated activity of root alkaline/neutral invertase involves the interaction with 14â€3â€3 proteins. Plant Journal, 2014, 80, 785-796.	5.7	43
107	Systems-Wide Analysis of Acclimation Responses to Long-Term Heat Stress and Recovery in the Photosynthetic Model Organism <i>Chlamydomonas reinhardtii</i> Â Â. Plant Cell, 2014, 26, 4270-4297.	6.6	107
108	Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC Plant Biology, 2014, 14, 309.	3.6	17

#	Article	IF	CITATIONS
109	Annotating unknown components from GC/EI-MS-based metabolite profiling experiments using GC/APCI(+)-QTOFMS. Metabolomics, 2014, 10, 324-336.	3.0	31
110	Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism <i>Chlamydomonas reinhardtii</i> Â Â Â. Plant Cell, 2014, 26, 2310-2350.	6.6	123
111	From systems biology to systems chemistry: metabolomic procedures enable insight into complex chemical reaction networks in water. RSC Advances, 2014, 4, 16777.	3.6	3
112	Profiling Methods to Identify Cold-Regulated Primary Metabolites Using Gas Chromatography Coupled to Mass Spectrometry. Methods in Molecular Biology, 2014, 1166, 171-197.	0.9	42
113	Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae. Metabolites, 2014, 4, 184-217.	2.9	18
114	Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 2013, 9, 44-66.	3.0	452
115	Transcriptomic and Metabolic Changes Associated with Photorespiratory Ammonium Accumulation in the Model Legume Lotus japonicus À Â. Plant Physiology, 2013, 162, 1834-1848.	4.8	26
116	Recent Applications of Metabolomics Toward Cyanobacteria. Metabolites, 2013, 3, 72-100.	2.9	65
117	Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars. PLoS ONE, 2013, 8, e60422.	2.5	69
118	Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid Metabolism during Developmental Senescence in Arabidopsis Â. Plant Physiology, 2013, 162, 1290-1310.	4.8	278
119	The REIL1 and REIL2 Proteins of <i>Arabidopsis thaliana</i> Are Required for Leaf Growth in the Cold Â. Plant Physiology, 2013, 163, 1623-1639.	4.8	27
120	Metabolic Changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH Sustains Polyhydroxybutyrate Accumulation. Metabolites, 2013, 3, 101-118.	2.9	87
121	Dissecting Rice Polyamine Metabolism under Controlled Long-Term Drought Stress. PLoS ONE, 2013, 8, e60325.	2.5	120
122	Identification of Drought Tolerance Markers in a Diverse Population of Rice Cultivars by Expression and Metabolite Profiling. PLoS ONE, 2013, 8, e63637.	2.5	119
123	Functional associations between the metabolome and manganese tolerance in Vigna unguiculata. Journal of Experimental Botany, 2012, 63, 329-340.	4.8	28
124	Conducting Molecular Biomarker Discovery Studies in Plants. Methods in Molecular Biology, 2012, 918, 127-150.	0.9	6
125	Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Science, 2012, 182, 101-111.	3.6	60
126	Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology (United Kingdom), 2012, 158, 398-413.	1.8	35

#	Article	IF	CITATIONS
127	Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum. BMC Systems Biology, 2012, 6, 72.	3.0	11
128	Comparative metabolomics of drought acclimation in model and forage legumes. Plant, Cell and Environment, 2012, 35, 136-149.	5.7	128
129	Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry). Phytochemistry, 2012, 77, 99-109.	2.9	39
130	Autoinducers Act as Biological Timers in Vibrio harveyi. PLoS ONE, 2012, 7, e48310.	2.5	57
131	Recommendations for Reporting Metabolite Data. Plant Cell, 2011, 23, 2477-2482.	6.6	326
132	Plant Metabolomics and Its Potential for Systems Biology Research. Methods in Enzymology, 2011, 500, 299-336.	1.0	78
133	Modulation of the Major Paths of Carbon in Photorespiratory Mutants of Synechocystis. PLoS ONE, 2011, 6, e16278.	2.5	81
134	Comparative ionomics and metabolomics in extremophile and glycophytic <i>Lotus</i> species under salt stress challenge the metabolic preâ€adaptation hypothesis. Plant, Cell and Environment, 2011, 34, 605-617.	5.7	122
135	Extensive metabolic crossâ€ŧalk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 2011, 190, 683-696.	7.3	111
136	Metabolic and Transcriptomic Phenotyping of Inorganic Carbon Acclimation in the Cyanobacterium <i>Synechococcus elongatus</i> PCC 7942 Â. Plant Physiology, 2011, 155, 1640-1655.	4.8	81
137	Overexpression of Sinapine Esterase BnSCE3 in Oilseed Rape Seeds Triggers Global Changes in Seed Metabolism Â. Plant Physiology, 2011, 155, 1127-1145.	4.8	42
138	Cyanobacterial Lactate Oxidases Serve as Essential Partners in N ₂ Fixation and Evolved into Photorespiratory Glycolate Oxidases in Plants. Plant Cell, 2011, 23, 2978-2990.	6.6	56
139	TagFinder: Preprocessing Software for the Fingerprinting and the Profiling of Gas Chromatography–Mass Spectrometry Based Metabolome Analyses. Methods in Molecular Biology, 2011, 860, 255-286.	0.9	75
140	Comparative Functional Genomics of Salt Stress in Related Model and Cultivated Plants Identifies and Overcomes Limitations to Translational Genomics. PLoS ONE, 2011, 6, e17094.	2.5	119
141	Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics, 2010, 6, 322-333.	3.0	296
142	Time course effects on primary metabolism of potato (Solanum tuberosum) tuber tissue after mechanical impact. Postharvest Biology and Technology, 2010, 56, 109-116.	6.0	32
143	Mining for robust transcriptional and metabolic responses to longâ€ŧerm salt stress: a case study on the model legume <i>Lotus japonicus</i> . Plant, Cell and Environment, 2010, 33, 468-480.	5.7	57
144	Photosynthesis and metabolism interact during acclimation of <i>Arabidopsis thaliana</i> to high irradiance and sulphur depletion. Plant, Cell and Environment, 2010, 33, 1974-1988.	5.7	71

#	Article	IF	CITATIONS
145	Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant Journal, 2010, 62, 1058-1071.	5.7	152
146	Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant Journal, 2010, 64, 215-229.	5.7	174
147	Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnology Journal, 2010, 8, 900-911.	8.3	113
148	Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis Â. Plant Physiology, 2010, 152, 698-710.	4.8	121
149	Predicting Arabidopsis Freezing Tolerance and Heterosis in Freezing Tolerance from Metabolite Composition. Molecular Plant, 2010, 3, 224-235.	8.3	120
150	Metabolic Pathway Relationships Revealed by an Integrative Analysis of the Transcriptional and Metabolic Temperature Stress-Response Dynamics in Yeast. OMICS A Journal of Integrative Biology, 2010, 14, 261-274.	2.0	42
151	Identification of Arabidopsis Mutants Impaired in the Systemic Regulation of Root Nitrate Uptake by the Nitrogen Status of the Plant Â. Plant Physiology, 2010, 153, 1250-1260.	4.8	50
152	Metabolic profiling of Arabidopsis thaliana epidermal cells. Journal of Experimental Botany, 2010, 61, 1321-1335.	4.8	61
153	Relationship between Grazing Lamb Growth Rate and Blood Plasma Analytes as Profiled by Gas Chromatography with Time-of-Flight Mass Spectrometry (GC-TOF/MS) Journal of Agricultural and Food Chemistry, 2010, 58, 913-917.	5.2	2
154	Dynamic Transcriptional and Metabolic Responses in Yeast Adapting to Temperature Stress. OMICS A Journal of Integrative Biology, 2010, 14, 249-259.	2.0	53
155	Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants. Annals of Botany, 2009, 103, 269-280.	2.9	197
156	Global Changes in the Transcript and Metabolic Profiles during Symbiotic Nitrogen Fixation in Phosphorus-Stressed Common Bean Plants Â. Plant Physiology, 2009, 151, 1221-1238.	4.8	163
157	Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to to toxic manganese supply and silicon. Journal of Experimental Botany, 2009, 60, 1663-1678.	4.8	72
158	Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices. Journal of Experimental Botany, 2009, 60, 3797-3807.	4.8	25
159	Metabolic profiling of â€~Conference' pears under low oxygen stress. Postharvest Biology and Technology, 2009, 51, 123-130.	6.0	133
160	An automated GCxGCâ€TOFâ€MS protocol for batchâ€wise extraction and alignment of mass isotopomer matrixes from differential ¹³ Câ€labelling experiments: a case study for photoautotrophicâ€mixotrophic grown <i>Chlamydomonas reinhardtii</i> cells. Journal of Basic Microbiology, 2009, 49, 82-91.	3.3	62
161	Inter-laboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–EI–TOF/MS) based plant metabolomics. Metabolomics, 2009, 5, 479-496.	3.0	120
162	Metabolome and water status phenotyping of <i>Arabidopsis</i> under abiotic stress cues reveals new insight into <i>ESK1</i> function. Plant, Cell and Environment, 2009, 32, 95-108.	5.7	78

#	Article	IF	CITATIONS
163	Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 2008, 132, 209-219.	5.2	290
164	Metabolomics of temperature stress. Physiologia Plantarum, 2008, 132, 220-235.	5.2	439
165	Plant metabolomics coming of age. Physiologia Plantarum, 2008, 132, 113-116.	5.2	39
166	Integrative functional genomics of salt acclimatization in the model legume <i>Lotus japonicus</i> . Plant Journal, 2008, 53, 973-987.	5.7	199
167	Physiologic and metabolic responses of wheat seedlings to elevated and super-elevated carbon dioxide. Advances in Space Research, 2008, 42, 1917-1928.	2.6	45
168	A rapid approach for phenotypeâ€screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics, 2008, 8, 4214-4225.	2.2	78
169	Retention index thresholds for compound matching in GC–MS metabolite profiling. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 871, 182-190.	2.3	157
170	TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics, 2008, 24, 732-737.	4.1	522
171	Metabolome-ionome-biomass interactions. Plant Signaling and Behavior, 2008, 3, 598-600.	2.4	26
172	Metabolome Phenotyping of Inorganic Carbon Limitation in Cells of the Wild Type and Photorespiratory Mutants of the Cyanobacterium <i>Synechocystis</i> sp. Strain PCC 6803. Plant Physiology, 2008, 148, 2109-2120.	4.8	82
173	Simultaneous Interaction of <i>Arabidopsis thaliana</i> with <i>Bradyrhizobium</i> Sp. Strain ORS278 and <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 Leads to Complex Transcriptome Changes. Molecular Plant-Microbe Interactions, 2008, 21, 244-259.	2.6	79
174	A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism. PLoS ONE, 2008, 3, e3935.	2.5	165
175	Phosphorus Stress in Common Bean: Root Transcript and Metabolic Responses. Plant Physiology, 2007, 144, 752-767.	4.8	300
176	Downregulation of Cinnamoyl-Coenzyme A Reductase in Poplar: Multiple-Level Phenotyping Reveals Effects on Cell Wall Polymer Metabolism and Structure. Plant Cell, 2007, 19, 3669-3691.	6.6	352
177	Comparative Metabolome Analysis of the Salt Response in Breeding Cultivars of Rice. , 2007, , 285-315.		54
178	Nonsupervised Construction and Application of Mass Spectral and Retention Time Index Libraries From Time-of-Flight Gas Chromatography-Mass Spectrometry Metabolite Profiles. Methods in Molecular Biology, 2007, 358, 19-38.	0.9	116
179	Application of Gas Chromatographyâ^'Mass Spectrometry Metabolite Profiling Techniques to the Analysis of Heathland Plant Diets of Sheep. Journal of Agricultural and Food Chemistry, 2007, 55, 1129-1138.	5.2	22
180	The Golm Metabolome Database: aÂdatabase for GC-MS based metabolite profiling. Topics in Current Genetics, 2007, , 75-95.	0.7	79

#	Article	IF	CITATIONS
181	A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant Journal, 2007, 49, 1076-1090.	5.7	70
182	Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant Journal, 2007, 50, 967-981.	5.7	419
183	Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. Plant Journal, 2007, 51, 390-405.	5.7	59
184	Molecular phenotyping of ligninâ€modified tobacco reveals associated changes in cellâ€wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant Journal, 2007, 52, 263-285.	5.7	161
185	Hybrid weakness controlled by the dosageâ€dependent lethal (DL) gene system in common bean (<i>Phaseolus vulgaris</i>) is caused by a shootâ€derived inhibitory signal leading to salicylic acidâ€associated root death. New Phytologist, 2007, 176, 537-549.	7.3	34
186	Proposed minimum reporting standards for chemical analysis. Metabolomics, 2007, 3, 211-221.	3.0	3,589
187	GC-EI-TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labelling. Phytochemistry, 2007, 68, 2258-2272.	2.9	105
188	Design of Metabolite Recovery by Variations of the Metabolite Profiling Protocol. , 2007, , 45-69.		4
189	Methods, applications and concepts of metabolite profiling: Primary metabolism. , 2007, 97, 171-194.		25
190	Current challenges and developments in GC–MS based metabolite profiling technology. Journal of Biotechnology, 2006, 124, 312-322.	3.8	176
191	Metabolic labeling of plant cell cultures with K(15)NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods, 2006, 2, 14.	4.3	92
192	Systemic Potato virus X infection induces defence gene expression and accumulation of β-phenylethylamine-alkaloids in potato. Functional Plant Biology, 2006, 33, 593.	2.1	16
193	DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant Journal, 2006, 47, 10-24.	5.7	243
194	Gas chromatography mass spectrometry–based metabolite profiling in plants. Nature Protocols, 2006, 1, 387-396.	12.0	1,808
195	Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 2006, 24, 447-454.	17.5	707
196	Genetic and genomic analysis of legume flowers and seeds. Current Opinion in Plant Biology, 2006, 9, 133-141.	7.1	35
197	Metabolomics. , 2006, , 1065-1069.		0
198	Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends in Biotechnology, 2005, 23, 28-33.	9.3	149

#	Article	IF	CITATIONS
199	Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta, 2005, 221, 891-903.	3.2	127
200	Metabolite Profiling Reveals a Role for Atypical Cinnamyl Alcohol Dehydrogenase CAD1 in the Synthesis of Coniferyl Alcohol in Tobacco Xylem. Plant Molecular Biology, 2005, 59, 753-769.	3.9	42
201	Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family. PLoS Computational Biology, 2005, 1, e40.	3.2	157
202	Non-linear PCA: a missing data approach. Bioinformatics, 2005, 21, 3887-3895.	4.1	167
203	Organization and Metabolism of Plastids and Mitochondria in Arbuscular Mycorrhizal Roots of Medicago truncatula Â. Plant Physiology, 2005, 139, 329-340.	4.8	148
204	Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants. Plant Physiology, 2005, 138, 304-318.	4.8	377
205	Identification of brassinosteroid-related genes by means of transcript co-response analyses. Nucleic Acids Research, 2005, 33, 2685-2696.	14.5	64
206	GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics, 2005, 21, 1635-1638.	4.1	1,247
207	Lotus japonicus Metabolic Profiling. Development of Gas Chromatography-Mass Spectrometry Resources for the Study of Plant-Microbe Interactions. Plant Physiology, 2005, 137, 1302-1318.	4.8	196
208	GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters, 2005, 579, 1332-1337.	2.8	596
209	Metabolome analysis using GC-MS. , 2005, , 165-174.		5
210	PaVESy: Pathway Visualization and Editing System. Bioinformatics, 2004, 20, 2841-2844.	4.1	39
211	CSB.DB: a comprehensive systems-biology database. Bioinformatics, 2004, 20, 3647-3651.	4.1	152
212	Hypothesis-driven approach to predict transcriptional units from gene expression data. Bioinformatics, 2004, 20, 1928-1939.	4.1	33
213	Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation - evidence for a role of raffinose in cold acclimation. Plant, Cell and Environment, 2004, 27, 1395-1404.	5.7	188
214	Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation inLotus japonicus. Plant Journal, 2004, 39, 487-512.	5.7	292
215	A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology, 2004, 22, 1601-1606.	17.5	283
216	Metabolite profiling in plant biology: platforms and destinations. Genome Biology, 2004, 5, 109.	9.6	205

#	Article	IF	CITATIONS
217	Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 2004, 9, 418-425.	8.8	685
218	Exploring the Temperature-Stress Metabolome of Arabidopsis. Plant Physiology, 2004, 136, 4159-4168.	4.8	943
219	Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry, 2003, 62, 887-900.	2.9	285
220	Phospholipase C is required for the control of stomatal aperture by ABA. Plant Journal, 2003, 34, 47-55.	5.7	130
221	Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Reports, 2003, 4, 989-993.	4.5	308
222	Comprehensive chemical derivatization for gas chromatography–mass spectrometry-based multi-targeted profiling of the major phytohormones. Journal of Chromatography A, 2003, 993, 89-102.	3.7	150
223	Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 2000, 23, 131-142.	5.7	1,058
224	Metabolite profiling for plant functional genomics. Nature Biotechnology, 2000, 18, 1157-1161.	17.5	1,936
225	Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta, 2000, 211, 841-845.	3.2	183
226	Identification of Uncommon Plant Metabolites Based on Calculation of Elemental Compositions Using Gas Chromatography and Quadrupole Mass Spectrometry. Analytical Chemistry, 2000, 72, 3573-3580.	6.5	520
227	Ca2+/phospholipid-binding (C2) domain in multiple plant proteins: novel components of the calcium-sensing apparatus. Plant Molecular Biology, 1998, 36, 627-637.	3.9	59
228	Molecular and Enzymatic Characterization of Three Phosphoinositide-Specific Phospholipase C Isoforms from Potato1. Plant Physiology, 1998, 116, 239-250.	4.8	123
229	115 Phosphoinositide signal transduction in guard cells. Biochemical Society Transactions, 1998, 26, S397-S397.	3.4	0
230	Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. Plant Journal, 1997, 11, 871-882.	5.7	83
231	Acyl carrier proteins from developing seeds of Cuphea lanceolata Ait. Planta, 1993, 191, 102.	3.2	17
232	Nonsupervised Construction and Application of Mass Spectral and Retention Time Index Libraries From Time-of-Flight Gas Chromatography-Mass Spectrometry Metabolite Profiles. , 0, , 19-38.		5