
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2238847/publications.pdf Version: 2024-02-01

Οίνο-Ημά Ελν

#	Article	IF	CITATIONS
1	Recoverable Catalysts for Asymmetric Organic Synthesis. Chemical Reviews, 2002, 102, 3385-3466.	47.7	787
2	Highly Enantioselective Hydrogenation of Quinolines Using Phosphine-Free Chiral Cationic Ruthenium Catalysts: Scope, Mechanism, and Origin of Enantioselectivity. Journal of the American Chemical Society, 2011, 133, 9878-9891.	13.7	341
3	Hydrogenation of Quinolines Using a Recyclable Phosphineâ€Free Chiral Cationic Ruthenium Catalyst: Enhancement of Catalyst Stability and Selectivity in an Ionic Liquid. Angewandte Chemie - International Edition, 2008, 47, 8464-8467.	13.8	296
4	Enantioselective Hydrogenation of Quinolines Catalyzed by Ir(BINAP)-Cored Dendrimers:Â Dramatic Enhancement of Catalytic Activity. Organic Letters, 2007, 9, 1243-1246.	4.6	197
5	Air-stable Ir-(P-Phos) complex for highly enantioselective hydrogenation of quinolines and their immobilization in poly(ethylene glycol) dimethyl ether (DMPEC). Chemical Communications, 2005, , 1390.	4.1	158
6	Asymmetric Hydrogenation of Quinoxalines with Diphosphinite Ligands: A Practical Synthesis of Enantioenriched, Substituted Tetrahydroquinoxalines. Angewandte Chemie - International Edition, 2009, 48, 9135-9138.	13.8	155
7	Air-Stable and Phosphine-Free Iridium Catalysts for Highly Enantioselective Hydrogenation of Quinoline Derivatives. Organic Letters, 2008, 10, 5265-5268.	4.6	152
8	Highly effective and recyclable dendritic BINAP ligands for asymmetric hydrogenation. Chemical Communications, 2000, , 789-790.	4.1	133
9	Multicolor Tunable Emission from Organogels Containing Tetraphenylethene, Perylenediimide, and Spiropyran Derivatives. Advanced Functional Materials, 2010, 20, 3244-3251.	14.9	133
10	Asymmetric hydrogenation of quinolines with high substrate/catalyst ratio. Chemical Communications, 2007, , 613-615.	4.1	122
11	Advances in Transition Metal-Catalyzed Asymmetric Hydrogenation of Heteroaromatic Compounds. Topics in Current Chemistry, 2013, 343, 145-190.	4.0	119
12	Highly enantioselective hydrogenation of quinolines under solvent-free or highly concentrated conditions. Green Chemistry, 2009, 11, 767.	9.0	114
13	Asymmetric Hydrogenation of 2,4â€Disubstituted 1,5â€Benzodiazepines Using Cationic Ruthenium Diamine Catalysts: An Unusual Achiral Counteranion Induced Reversal of Enantioselectivity. Angewandte Chemie - International Edition, 2012, 51, 5706-5710.	13.8	111
14	Highly Enantioselective Iridium-Catalyzed Hydrogenation of Quinoline Derivatives Using Chiral Phosphinite H8-BINAPO. Advanced Synthesis and Catalysis, 2005, 347, 1755-1758.	4.3	110
15	Airâ€Stable and Highly Active Dendritic Phosphine Oxide―Stabilized Palladium Nanoparticles: Preparation, Characterization and Applications in the Carbonâ€Carbon Bond Formation and Hydrogenation Reactions. Advanced Synthesis and Catalysis, 2008, 350, 846-862.	4.3	110
16	Asymmetric Hydrogenation in the Core of Dendrimers. Accounts of Chemical Research, 2014, 47, 2894-2906.	15.6	110
17	Highly Enantioselective Synthesis of Indolines: Asymmetric Hydrogenation at Ambient Temperature and Pressure with Cationic Ruthenium Diamine Catalysts. Angewandte Chemie - International Edition, 2016, 55, 13863-13866.	13.8	104
18	Highly Enantioselective Hydrogenation of Quinoline and Pyridine Derivatives with Iridiumâ€(Pâ€Phos) Catalyst. Advanced Synthesis and Catalysis, 2010, 352, 1055-1062.	4.3	100

#	Article	IF	CITATIONS
19	Highly efficient and enantioselective hydrogenation of quinolines and pyridines with Ir-Difluorphos catalyst. Organic and Biomolecular Chemistry, 2010, 8, 3464.	2.8	97
20	Highly Effective Asymmetric Hydrogenation of Cyclic <i>N</i> -Alkyl Imines with Chiral Cationic Ru-MsDPEN Catalysts. Organic Letters, 2011, 13, 4348-4351.	4.6	96
21	Cationâ€Triggered Switchable Asymmetric Catalysis with Chiral Aza rownPhos. Angewandte Chemie - International Edition, 2015, 54, 4334-4337.	13.8	90
22	Asymmetric Hydrogenation of 2- and 2,3-Substituted Quinoxalines with Chiral Cationic Ruthenium Diamine Catalysts. Organic Letters, 2011, 13, 6568-6571.	4.6	89
23	Asymmetric Hydrogenation of <i>N</i> â€Alkyl Ketimines with Phosphineâ€Free, Chiral, Cationic Ruâ€MsDPEN Catalysts. Chemistry - A European Journal, 2011, 17, 1109-1113.	3.3	80
24	Asymmetric Rutheniumâ€Catalyzed Hydrogenation of 2―and 2,9â€Substituted 1,10â€Phenanthrolines. Angewandte Chemie - International Edition, 2013, 52, 7172-7176.	13.8	80
25	Highly Enantioselective Synthesis of Chiral Tetrahydroquinolines and Tetrahydroisoquinolines by Rutheniumâ€Catalyzed Asymmetric Hydrogenation in Ionic Liquid. Advanced Synthesis and Catalysis, 2013, 355, 3727-3735.	4.3	73
26	Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Rutheniumâ€Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination. Angewandte Chemie - International Edition, 2019, 58, 3809-3813.	13.8	67
27	Supramolecular chiral phosphorous ligands based on a [2]pseudorotaxane complex for asymmetric hydrogenation. Tetrahedron Letters, 2008, 49, 2878-2881.	1.4	66
28	Highly Enantioselective Direct Synthesis of Endocyclic Vicinal Diamines through Chiral Ru(diamine) atalyzed Hydrogenation of 2,2′â€Bisquinoline Derivatives. Angewandte Chemie - International Edition, 2016, 55, 12891-12894.	13.8	59
29	Fluorescent Dendritic Organogels Based on 2â€{2â€ ² â€Hydroxyphenyl)benzoxazole: Emission Enhancement and Multiple Stimuliâ€Responsive Properties. Chemistry - A European Journal, 2015, 21, 11018-11028.	3.3	58
30	Metal-free tandem cyclization/hydrosilylation to construct tetrahydroquinoxalines. Green Chemistry, 2018, 20, 403-411.	9.0	58
31	pH-Regulated transfer hydrogenation of quinoxalines with a Cp*Ir–diamine catalyst in aqueous media. Tetrahedron, 2011, 67, 6206-6213.	1.9	57
32	Amphiphilic DNA-dendron hybrid: a new building block for functional assemblies. Soft Matter, 2011, 7, 7187.	2.7	55
33	Asymmetric Ruthenium atalyzed Hydrogenation of 2,6â€Disubstituted 1,5â€Naphthyridines: Access to Chiral 1,5â€Diazaâ€ <i>cis</i> â€Decalins. Angewandte Chemie - International Edition, 2015, 54, 4622-4625.	13.8	52
34	Dendronized Poly(Ru-BINAP) Complexes: Highly Effective and Easily Recyclable Catalysts For Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2004, 346, 1440-1444.	4.3	51
35	Asymmetric Hydrogenation of Inâ€Situ Generated Isochromenylium Intermediates by Copper/Ruthenium Tandem Catalysis. Angewandte Chemie - International Edition, 2017, 56, 4135-4139.	13.8	51
36	B(C ₆ F ₅) ₃ â€Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane. Advanced Synthesis and Catalysis, 2019, 361, 2301-2308.	4.3	49

#	Article	IF	CITATIONS
37	Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Rutheniumâ€Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination. Angewandte Chemie, 2019, 131, 3849-3853.	2.0	48
38	Rhodium(<scp>i</scp>)-catalyzed C6-selective C–H alkenylation and polyenylation of 2-pyridones with alkenyl and conjugated polyenyl carboxylic acids. Chemical Science, 2019, 10, 10089-10096.	7.4	47
39	Polyethylene Glycol as an Environmentally Friendly and Recyclable Reaction Medium for Enantioselective Hydrogenation. Advanced Synthesis and Catalysis, 2006, 348, 2172-2182.	4.3	46
40	Advances in Transfer Hydrogenation of Carbonyl Compounds in Water. ChemCatChem, 2015, 7, 398-400.	3.7	43
41	Asymmetric Hydrogenation of Quinoline Derivatives Catalyzed by Cationic Transition Metal Complexes of Chiral Diamine Ligands: Scope, Mechanism and Catalyst Recycling. Chemical Record, 2016, 16, 2697-2711.	5.8	42
42	Halogen-bonding for visual chloride ion sensing: a case study using supramolecular poly(aryl ether) dendritic organogel systems. Chemical Communications, 2016, 52, 2269-2272.	4.1	41
43	Dendritic MonoPhos: synthesis and application in Rh-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry, 2006, 17, 536-543.	1.8	38
44	Asymmetric hydrogenation of N-alkyl and N-aryl ketimines using chiral cationic Ru(diamine) complexes as catalysts: the counteranion and solvent effects, and substrate scope. Tetrahedron, 2012, 68, 5248-5257.	1.9	38
45	Consecutive Intermolecular Reductive Amination/Asymmetric Hydrogenation: Facile Access to Sterically Tunable Chiral Vicinal Diamines and Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2019, 58, 16831-16834.	13.8	38
46	Ruthenium-Catalyzed Enantioselective Hydrogenation of 1,8-Naphthyridine Derivatives. Organic Letters, 2016, 18, 2730-2733.	4.6	37
47	Rh(I)-Catalyzed C6-Selective Decarbonylative Alkylation of 2-Pyridones with Alkyl Carboxylic Acids and Anhydrides. Organic Letters, 2020, 22, 4228-4234.	4.6	37
48	Chiral Metallacrown Ethers for Asymmetric Hydrogenation: Alkaliâ€Metal Ion Mediated Enhancement of Enantioselectivity. Chemistry - an Asian Journal, 2010, 5, 2454-2458.	3.3	35
49	Efficient asymmetric hydrogenation of quinolines in neat water catalyzed by chiral cationic Ru-diamine complexes. Catalysis Science and Technology, 2014, 4, 2887-2890.	4.1	34
50	Controlled Reversible Anchoring of η ⁶ â€Arene/TsDPEN―Ruthenium(II) Complex onto Magnetic Nanoparticles: A New Strategy for Catalyst Separation and Recycling. Advanced Synthesis and Catalysis, 2011, 353, 2915-2919.	4.3	30
51	Asymmetric hydrogenation of 3-substituted 2H-1,4-benzoxazines with chiral cationic Ru-MsDPEN catalysts: a remarkable counteranion effect. Organic Chemistry Frontiers, 2014, 1, 952-955.	4.5	29
52	Highly Efficient Asymmetric Hydrogenation of α,β-Unsaturated Carboxylic Acids Catalyzed by Ruthenium(II)-Dipyridylphosphine Complexes. Advanced Synthesis and Catalysis, 2007, 349, 517-520.	4.3	28
53	Podandâ€Based Dimeric Chromium(III)–Salen Complex for Asymmetric Henry Reaction: Cooperative Catalysis Promoted by Complexation of Alkali Metal Ions. Chemistry - A European Journal, 2014, 20, 16454-16457.	3.3	28
54	Structure and Dynamic Process of Two-Dimensional Monodendron Assembly. Chemistry of Materials, 2003, 15, 3098-3104.	6.7	27

#	Article	IF	CITATIONS
55	Janus dendritic phosphines: synthesis and application in Suzuki coupling reactions. New Journal of Chemistry, 2012, 36, 380-385.	2.8	27
56	Highly Enantioselective Hydrogenation of 2,4â€Diarylâ€1,5â€Benzodiazepines Catalyzed by Dendritic Phosphinooxazoline Iridium Complexes. Chemistry - an Asian Journal, 2013, 8, 1101-1104.	3.3	27
57	Enantioselective synthesis of tunable chiral pyridine–aminophosphine ligands and their applications in asymmetric hydrogenation. Organic and Biomolecular Chemistry, 2019, 17, 5099-5105.	2.8	26
58	Direct synthesis of 8-aryl tetrahydroquinolines via pd-catalyzed ortho-arylation of arylureas in water. RSC Advances, 2013, 3, 1025-1028.	3.6	25
59	Ruthenium-Catalyzed Enantioselective Hydrogenation of Phenanthridine Derivatives. Organic Letters, 2017, 19, 1458-1461.	4.6	25
60	Asymmetric Hydrogenation of Cyclic Imines of Benzoazepines and Benzodiazepines with Chiral, Cationic Ruthenium–Diamine Catalysts. European Journal of Organic Chemistry, 2017, 2017, 1973-1977.	2.4	25
61	Polymer-supported chiral catalysts with positive support effects. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1867-1871.	2.2	24
62	A Pronounced Halogen Effect on the Organogelation Properties of Peripherally Halogen Functionalized Poly(benzyl ether) Dendrons. Chemistry - A European Journal, 2016, 22, 4980-4990.	3.3	24
63	Asymmetric Hydrogenation of Inâ€Situ Generated Isochromenylium Intermediates by Copper/Ruthenium Tandem Catalysis. Angewandte Chemie, 2017, 129, 4199-4203.	2.0	24
64	A Synthetic Route to Chiral Benzo-Fused N-Heterocycles via Sequential Intramolecular Hydroamination and Asymmetric Hydrogenation of Anilino-Alkynes. Organometallics, 2019, 38, 3979-3990.	2.3	24
65	Ru atalyzed Deoxygenative Transfer Hydrogenation of Amides to Amines with Formic Acid/Triethylamine. Advanced Synthesis and Catalysis, 2019, 361, 3800-3806.	4.3	23
66	Manganese atalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
67	Highly Enantioselective Synthesis of Indolines: Asymmetric Hydrogenation at Ambient Temperature and Pressure with Cationic Ruthenium Diamine Catalysts. Angewandte Chemie, 2016, 128, 14067-14070.	2.0	22
68	Asymmetric Hydrogenation of Dibenzo[<i>c,e</i>]azepine Derivatives with Chiral Cationic Ruthenium Diamine Catalysts. Organic Letters, 2019, 21, 5538-5541.	4.6	22
69	Diaza-Crown Ether-Bridged Chiral Diphosphoramidite Ligands: Synthesis and Applications in Asymmetric Catalysis. Journal of Organic Chemistry, 2020, 85, 8176-8184.	3.2	22
70	Design and Synthesis of Janusâ€īype Chiral Dendritic Diphosphanes and Their Applications in Asymmetric Hydrogenation. European Journal of Organic Chemistry, 2012, 2012, 6737-6744.	2.4	21
71	Asymmetric Hydrogenation of α-Purine Nucleobase-Substituted Acrylates with Rhodium Diphosphine Complexes: Access to Tenofovir Analogues. Organic Letters, 2016, 18, 2260-2263.	4.6	21
72	Highly Enantioselective Ruthenium-Catalyzed Cascade Double Reduction Strategy: Construction of Structurally Diverse Julolidines and Their Analogues. Organic Letters, 2020, 22, 2251-2255.	4.6	21

#	Article	IF	CITATIONS
73	Metallacrown Ether Catalysts Containing Phosphine–Phosphite Polyether Ligands for Rhâ€Catalyzed Asymmetric Hydrogenation – Enhancements in Activity and Enantioselectivity. European Journal of Organic Chemistry, 2014, 2014, 6713-6719.	2.4	17
74	Highly Enantioselective Direct Synthesis of Endocyclic Vicinal Diamines through Chiral Ru(diamine)â€Catalyzed Hydrogenation of 2,2′â€Bisquinoline Derivatives. Angewandte Chemie, 2016, 128, 13083-13086.	2.0	17
75	Selfâ€Collapsing of Single Molecular Polyâ€Propylene Oxide (PPO) in a 3D DNA Network. Small, 2018, 14, 1703426.	10.0	17
76	Asymmetric Ruthenium-Catalyzed Hydrogenation of Terpyridine-Type N-Heteroarenes: Direct Access to Chiral Tridentate Nitrogen Ligands. Organic Letters, 2020, 22, 6452-6457.	4.6	16
77	BF ₃ ·Et ₂ O as a metal-free catalyst for direct reductive amination of aldehydes with amines using formic acid as a reductant. Green Chemistry, 2021, 23, 5205-5211.	9.0	16
78	Rhodium atalyzed ONâ€OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
79	From Weakness to Strength: C–H/π-Interaction-Guided Self-Assembly and Gelation of Poly(benzyl) Tj ETQq1 1	0.784314	l rgBT /Over
80	A Click Approach to Chiralâ€Dendronized Polyfluorene Derivatives. Macromolecular Rapid Communications, 2007, 28, 2249-2255.	3.9	14
81	A pH responsive dendron-DNA-protein hybrid supramolecular system. Soft Matter, 2010, 6, 2143.	2.7	14
82	Poly(benzyl ether) dendrons without conventional gelation motifs as a new kind of effective organogelators. Science Bulletin, 2012, 57, 4289-4295.	1.7	14
83	Asymmetric Hydrogenation of Bis(quinolinâ€2â€yl)methanes: A Direct Access to Chiral 1,3â€Diamines. Chinese Journal of Chemistry, 2018, 36, 1169-1173.	4.9	14
84	Synthesis, optical properties, and spectral stability of chiral dendronized binaphthylâ€containing polyfluorene derivatives. Journal of Polymer Science Part A, 2008, 46, 886-896.	2.3	13
85	Solventâ€Regulated Asymmetric Hydrogenation of Quinoline Derivatives in Oligo(Ethylene Glycol)s through Host–Guest Interactions. Chemistry - an Asian Journal, 2016, 11, 2773-2777.	3.3	13
86	Functionalization of DNA-Dendron Supramolecular Fibers and Application in Regulation of <i> Escherichia coli</i> Association. ACS Applied Materials & Interfaces, 2015, 7, 7351-7356.	8.0	12
87	Rh(I) atalyzed Direct C6â~'H Arylation of 2â€Pyridones with Aryl Carboxylic Acids. Advanced Synthesis and Catalysis, 2021, 363, 3995-4001.	4.3	12
88	Diastereodivergent Synthesis of Chiral 4-Fluoropyrrolidines (<i>exo</i> and <i>exo</i> ′) Based on the Cu(II)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition. Journal of Organic Chemistry, 2021, 86, 8695-8705.	3.2	12
89	The Synthesis of Dendritic β-Diketonato Ligands and Their Europium Complexes. European Journal of Organic Chemistry, 2007, 2007, 508-516.	2.4	11
90	Consecutive Intermolecular Reductive Amination/Asymmetric Hydrogenation: Facile Access to Sterically Tunable Chiral Vicinal Diamines and Nâ€Heterocyclic Carbenes. Angewandte Chemie, 2019, 131, 16987-16990.	2.0	11

#	Article	IF	CITATIONS
91	Ruthenium-catalyzed enantioselective hydrogenation of quinoxalinones and quinazolinones. Organic Chemistry Frontiers, 2022, 9, 400-406.	4.5	11
92	Synthesis of Dendritic BINAP Ligands and Their Applications in Asymmetric Hydrogenation. Chinese Journal of Chemistry, 2010, 20, 1139-1141.	4.9	10
93	Artificial Stimuli-Responsive Catalytic Systems for Switchable Asymmetric Catalysis. Chinese Journal of Organic Chemistry, 2020, 40, 3672.	1.3	9
94	Synthesis and Characterization of Donorâ€Acceptorâ€Donor Triads Containing Tetrathiafulvalene and Naphthalene Diimide Units: Towards Regulation of the Intermolecular Chargeâ€Transfer Interaction by Varying the Attached Side Groups. Chinese Journal of Chemistry, 2004, 22, 296-305.	4.9	7
95	Chemoselective and Enantioselective Hydrogenation of 2,4â€Diarylâ€3 <i>H</i> â€benzo[<i>b</i>]azepines Catalyzed by Dendritic Phosphinooxazoline Iridium Complexes. Asian Journal of Organic Chemistry, 2017, 6, 1219-1221.	2.7	7
96	Manganeseâ€Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angewandte Chemie, 2022, 134, .	2.0	6
97	Improved synthesis of 5,5â€diamino BINAP and application to asymmetric hydrogenation. Chinese Journal of Chemistry, 2004, 22, 891-893.	4.9	5
98	Synthesis and chiroptical properties of chiral binaphthyl ontaining polyfluorene derivatives. Journal of Polymer Science Part A, 2011, 49, 680-689.	2.3	5
99	Asymmetric Hydrogenation of 2â€Arylâ€5,6â€dihydropyrazine Derivatives with Chiral Cationic Ruthenium Diamine Catalysts. Chinese Journal of Chemistry, 2014, 32, 991-994.	4.9	5
100	Facile Synthesis of Chiral Diphosphineâ€Containing Multiple Dendrimeric Catalysts for Enantioselective Hydrogenation. Chinese Journal of Chemistry, 2012, 30, 2009-2015.	4.9	4
101	Development of Quinoline-Derived Chiral Diaminocarbene Ligands and Their Transition Metal Complexes: Synthesis, Structural Characterization, and Catalytic Properties. Organometallics, 2020, 39, 1945-1960.	2.3	4
102	Rhodiumâ€Catalyzed ONâ€OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angewandte Chemie, 2022, 134, .	2.0	3
103	Ruthenium Catalyzed Asymmetric Hydrogenation of α- and β-Ketoesters in Room Temperature Ionic Liquids Using Chiral P-Phos Ligand. ACS Symposium Series, 2007, , 224-234.	0.5	0
104	Rücktitelbild: Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Ruthenium atalyzed Asymmetric Cascade Hydrogenation/Reductive Amination (Angew.) Tj ETC)ሳውው0 rgl	3T Øverlock