Heini Wernli

List of Publications by Citations

Source: https://exaly.com/author-pdf/2238505/heini-wernli-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 238 12,256 102 h-index g-index citations papers 6.68 326 13,884 4.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
238	A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. <i>Quarterly Journal of the Royal Meteorological Society</i> , 1997 , 123, 467-489	6.4	459
237	Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. <i>Journal of Geophysical Research</i> , 2003 , 108,		333
236	IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. <i>Bulletin of the American Meteorological Society</i> , 2013 , 94, 529-547	6.1	308
235	Surface Cyclones in the ERA-40 Dataset (1958\(\textbf{D}\) 001). Part I: Novel Identification Method and Global Climatology. <i>Journals of the Atmospheric Sciences</i> , 2006 , 63, 2486-2507	2.1	298
234	HyMeX: A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle. <i>Bulletin of the American Meteorological Society</i> , 2014 , 95, 1063-1082	6.1	254
233	Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7067-7080	6.8	241
232	SALA Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts. <i>Monthly Weather Review</i> , 2008 , 136, 4470-4487	2.4	233
231	A 15-Year Climatology of Warm Conveyor Belts. <i>Journal of Climate</i> , 2004 , 17, 218-237	4.4	223
230	Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. <i>Journal of Geophysical Research</i> , 2008 , 113,		202
229	Quantifying the Relevance of Cyclones for Precipitation Extremes. <i>Journal of Climate</i> , 2012 , 25, 6770-6	57 <u>8</u> 104	197
228	The LAGRANTO Lagrangian analysis tool Iversion 2.0. Geoscientific Model Development, 2015, 8, 2569-2	.5 % 63	189
227	A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979 1 993). <i>Journal of Geophysical Research</i> , 2003 , 108,		184
226	. Tellus, Series B: Chemical and Physical Meteorology, 2003 , 55, 953-965	3.3	181
225	Dynamical aspects of the life cycle of the winter storm <code>I</code> othar[[2426 December 1999). <i>Quarterly Journal of the Royal Meteorological Society</i> , 2002, 128, 405-429	6.4	173
224	Warm Conveyor Belts in the ERA-Interim Dataset (1979\(\textit{0}\)10). Part I: Climatology and Potential Vorticity Evolution. <i>Journal of Climate</i> , 2014 , 27, 3-26	4.4	170
223	Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	168
222	A global climatology of stratosphere t roposphere exchange using the ERA-Interim data set from 1979 to 2011. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 913-937	6.8	166

(1991-2010)

221	A Lagrangian Climatology of Tropical Moisture Exports to the Northern Hemispheric Extratropics. Journal of Climate, 2010 , 23, 987-1003	4.4	164	
220	Northern Hemisphere Extratropical Cyclones: A Comparison of Detection and Tracking Methods and Different Reanalyses. <i>Monthly Weather Review</i> , 2008 , 136, 880-897	2.4	163	
219	Tropical troposphere-to-stratosphere transport inferred from trajectory calculations. <i>Journal of Geophysical Research</i> , 2004 , 109, n/a-n/a		162	
218	Heavy precipitation on the alpine southside: An upper-level precursor. <i>Geophysical Research Letters</i> , 1998 , 25, 1435-1438	4.9	161	
217	Identification and ERA-15 Climatology of Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause. <i>Journals of the Atmospheric Sciences</i> , 2007 , 64, 1569-1586	2.1	157	
216	A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. <i>Quarterly Journal of the Royal Meteorological Society</i> , 1997 , 123, 1677-1706	6.4	156	
215	The key role of diabatic processes in modifying the upper-tropospheric wave guide: a North Atlantic case-study. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2011 , 137, 2174-2193	6.4	153	
214	The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase, and research highlights. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2011 , 137, 3-30	6.4	149	
213	Balancing Europe's wind power output through spatial deployment informed by weather regimes. <i>Nature Climate Change</i> , 2017 , 7, 557-562	21.4	145	
212	Tropopause folds and cross-tropopause exchange: A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001. <i>Journal of Geophysical Research</i> , 2003 , 108,		132	
211	Seasonality and extent of extratropical TST derived from in-situ CO measurements during SPURT. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 1427-1442	6.8	128	
210	Warm Conveyor Belts in the ERA-Interim Dataset (1979\(\textit{10}\) 10). Part II: Moisture Origin and Relevance for Precipitation. <i>Journal of Climate</i> , 2014 , 27, 27-40	4.4	125	
209	Importance of latent heat release in ascending air streams for atmospheric blocking. <i>Nature Geoscience</i> , 2015 , 8, 610-614	18.3	123	
208	A Lagrangian 🛘 -year climatologyြbf (deep) cross-tropopause exchange in the extratropical Northern Hemisphere. <i>Journal of Geophysical Research</i> , 2002 , 107, ACL 13-1		120	
207	An event-based jet-stream climatology and typology. <i>International Journal of Climatology</i> , 2006 , 26, 28	83- 3 . 9 1	117	
206	Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmospheric Chemistry and Physics, 2014 , 14, 4029-4054	6.8	112	
205	A New Perspective of Stratospherellroposphere Exchange. <i>Bulletin of the American Meteorological Society</i> , 2003 , 84, 1565-1574	6.1	110	
204	The Palette of Fronts and Cyclones within a Baroclinic Wave Development. <i>Journals of the Atmospheric Sciences</i> , 1991 , 48, 1666-1689	2.1	107	

203	Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. Journal of Geophysical Research, 2008, 113,		104
202	Strong influence of lowermost stratospheric ozone on lower tropospheric background ozone changes over Europe. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	102
201	An intercomparison of results from three trajectory models. <i>Meteorological Applications</i> , 2001 , 8, 127-1	35 .1	101
200	Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation. <i>Journal of Geophysical Research</i> , 2008 , 113,		99
199	Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: a case-study with the limited-area model COSMO. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2012 , 138, 407-418	6.4	98
198	Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 3053-3069	6.8	98
197	The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2013 , 139, 1780-1797	6.4	93
196	Measuring variations of ¹⁸O and ²H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 1491-1511	4	91
195	Atmospheric processes triggering the central European floods in June 2013. <i>Natural Hazards and Earth System Sciences</i> , 2014 , 14, 1691-1702	3.9	88
194	Atmospheric Rivers Emerge as a Global Science and Applications Focus. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, 1969-1973	6.1	78
193	ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, 271-288	6.1	77
192	The North Atlantic Waveguide and Downstream Impact Experiment. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 1607-1637	6.1	77
191	Influence of Upstream Diabatic Heating upon an Alpine Event of Heavy Precipitation. <i>Monthly Weather Review</i> , 2001 , 129, 2822-2828	2.4	76
190	Global Climatologies of Eulerian and Lagrangian Flow Features based on ERA-Interim. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, 1739-1748	6.1	73
189	Highly resolved observations of trace gases in the lowermost stratosphere and upper troposphere from the Spurt project: an overview. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 283-301	6.8	73
188	A PV Perspective on the Vertical Structure of Mature Midlatitude Cyclones in the Northern Hemisphere. <i>Journals of the Atmospheric Sciences</i> , 2012 , 69, 725-740	2.1	72
187	Stratosphere Troposphere Exchange and Its Relation to Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause. <i>Journals of the Atmospheric Sciences</i> , 2007 , 64, 1587-1602	2.1	71
186	A Global Climatology of Tropical Moisture Exports. <i>Journal of Climate</i> , 2013 , 26, 3031-3045	4.4	69

(2012-2013)

185	Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?. <i>Meteorologische Zeitschrift</i> , 2013 , 22, 61-68	3.1	67	
184	The importance of stratosphericEropospheric transport in affecting surface ozone concentrations in the western and northern tier of the United States. <i>Atmospheric Environment</i> , 2011 , 45, 4845-4857	5.3	67	
183	Large-scale wind and precipitation extremes in the Mediterranean: a climatological analysis for 1979\(\mathbb{Q}\)012. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2404-2417	6.4	64	•
182	Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations*. <i>Journals of the Atmospheric Sciences</i> , 2013 , 70, 627-652	2.1	62	
181	A Lagrangian investigation of hot and cold temperature extremes in Europe. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2015 , 141, 98-108	6.4	62	
180	Tropopause folds in ERA-Interim: Global climatology and relation to extreme weather events. Journal of Geophysical Research D: Atmospheres, 2015 , 120, 4860-4877	4.4	61	
179	Sources of water vapour contributing to the Elbe flood in August 2002 tagging study in a mesoscale model. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2009 , 135, 205-223	6.4	61	
178	Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. <i>Nature Geoscience</i> , 2018 , 11, 108-113	18.3	58	
177	The isotopic composition of precipitation from a winter storm (a) case study with the limited-area model COSMO_{iso}. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1629-1648	6.8	58	
176	Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 741-756	6.8	58	
175	The Milan photooxidant plume. Journal of Geophysical Research, 1997, 102, 23375-23388		57	
174	Growth and Decay of an Extra-Tropical Cyclone® PV-Tower. <i>Meteorology and Atmospheric Physics</i> , 2000 , 73, 139-156	2	57	
173	Climate impacts of European-scale anthropogenic vegetation changes: A sensitivity study using a regional climate model. <i>Journal of Geophysical Research</i> , 2001 , 106, 7817-7835		57	
172	A Climatology of Cold Air Outbreaks and Their Impact on AirBea Heat Fluxes in the High-Latitude South Pacific. <i>Journal of Climate</i> , 2015 , 28, 342-364	4.4	56	
171	The transport history of two Saharan dust events archived in an Alpine ice core. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 667-688	6.8	56	
170	The Role of Warm Conveyor Belts for the Intensification of Extratropical Cyclones in Northern Hemisphere Winter. <i>Journals of the Atmospheric Sciences</i> , 2016 , 73, 3997-4020	2.1	56	
169	Estimates of background surface ozone concentrations in the United States based on model-derived source apportionment. <i>Atmospheric Environment</i> , 2014 , 84, 275-288	5.3	55	
168	Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1245-1258	6.4	55	

167	Forecasted deep stratospheric intrusions over Central Europe: case studies and climatologies. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 499-524	6.8	55	
166	The dynamical structure of intense Mediterranean cyclones. <i>Climate Dynamics</i> , 2015 , 44, 2411-2427	4.2	54	
165	A case study on the formation and evolution of ice supersaturation in the vicinity of a warm conveyor belt's outflow region. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 973-987	6.8	54	
164	Identification and climatology of cut-off lows near the tropopause. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1146, 256-90	6.5	52	
163	A novel model to predict the physical state of atmospheric H ₂ 5O ₄ /NH ₃ /H ₂ 003, 3, 909-924	u 6 >	052	
162	The Role of Extratropical Cyclones and Fronts for Southern Ocean Freshwater Fluxes. <i>Journal of Climate</i> , 2014 , 27, 6205-6224	4.4	51	
161	Stratosphere-troposphere exchange: A model and method intercomparison. <i>Journal of Geophysical Research</i> , 2003 , 108,		49	
160	Nitrogen oxides and ozone in the tropopause region of the northern hemisphere: Measurements from commercial aircraft in 1995/1996 and 1997. <i>Journal of Geophysical Research</i> , 2001 , 106, 27673-276	599	49	
159	How important is intensified evaporation for Mediterranean precipitation extremes?. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 5240-5256	4.4	47	
158	Forecast, observation and modelling of a deep stratospheric intrusion event over Europe. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 763-777	6.8	47	
157	Quantifying the importance of stratospheric-tropospheric transport on surface ozone concentrations at high- and low-elevation monitoring sites in the United States. <i>Atmospheric Environment</i> , 2012 , 62, 646-656	5.3	46	
156	Seasonal cycles and variability of O₃ and H₂O in the UT/LMS during SPURT. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 109-125	6.8	46	
155	Detailed modeling of mountain wave PSCs. Atmospheric Chemistry and Physics, 2003, 3, 697-712	6.8	46	
154	Spatial Forecast Verification Methods Intercomparison Project: Application of the SAL Technique. Weather and Forecasting, 2009 , 24, 1472-1484	2.1	45	
153	On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 3202-32	2211	44	
152	Isotope meteorology of cold front passages: A case study combining observations and modeling. <i>Geophysical Research Letters</i> , 2015 , 42, 5652-5660	4.9	44	
151	Dehydration potential of ultrathin clouds at the tropical tropopause. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	44	
150	Structure and evolution of an isolated semi-geostrophic cyclone. <i>Quarterly Journal of the Royal Meteorological Society</i> , 1993 , 119, 57-90	6.4	44	

(2010-2014)

149	Comparison of Eulerian and Lagrangian moisture source diagnostics Ithe flood event in eastern Europe in May 2010. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6605-6619	6.8	42
148	Enhanced ozone over western North America from biomass burning in Eurasia during April 2008 as seen in surface and profile observations. <i>Atmospheric Environment</i> , 2010 , 44, 4497-4509	5.3	42
147	Kilometer-Scale Climate Models: Prospects and Challenges. <i>Bulletin of the American Meteorological Society</i> , 2020 , 101, E567-E587	6.1	40
146	A gridded dataset of hourly precipitation in Germany: Its construction, climatology and application. <i>Meteorologische Zeitschrift</i> , 2008 , 17, 719-732	3.1	39
145	A composite study on the structure and formation of ozone miniholes and minihighs over central Europe. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	38
144	A Planetary-Scale to Mesoscale Perspective of the Life Cycles of Extratropical Cyclones: The Bridge between Theory and Observations 1999 , 139-185		38
143	Exceptional Air Mass Transport and Dynamical Drivers of an Extreme Wintertime Arctic Warm Event. <i>Geophysical Research Letters</i> , 2017 , 44, 12,028-12,036	4.9	37
142	A complex case study of down to the surface intrusions of persistent stratospheric air over the Eastern Mediterranean. <i>Atmospheric Environment</i> , 2006 , 40, 4113-4125	5.3	37
141	The dichotomous structure of the warm conveyor belt. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2014 , 140, 1809-1824	6.4	36
140	Classification of precipitation events with a convective response timescale and their forecasting characteristics. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	36
139	The Effect of Barotropic Shear on Upper-Level Induced Cyclogenesis: Semigeostrophic and Primitive Equation Numerical Simulations. <i>Journals of the Atmospheric Sciences</i> , 1998 , 55, 2080-2094	2.1	36
138	Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, 2260-228.	3 6.1	35
137	The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing[processes from lower-tropospheric survey flights. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 6125-6151	6.8	35
136	An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO. <i>Geoscientific Model Development</i> , 2013 , 6, 1989-2004	6.3	35
135	Lagrangian simulations of stable isotopes in water vapor: An evaluation of nonequilibrium fractionation in the Craig-Gordon model. <i>Journal of Geophysical Research</i> , 2009 , 114,		34
134	Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system. <i>Journal of Geophysical Research</i> , 2003 , 108,		34
133	Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability. <i>Hydrology and Earth System Sciences</i> , 2013 , 17, 3261-3277	5.5	33
132	Transport timescales and tracer properties in the extratropical UTLS. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7929-7944	6.8	32

131	Processes leading to heavy precipitation associated with two Mediterranean cyclones observed during the HyMeX SOP1. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2016 , 142, 275-286	6.4	32
130	Processes determining heat waves across different European climates. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2019 , 145, 2973-2989	6.4	31
129	The Linkage between the Warm and the Cold Conveyor Belts in an Idealized Extratropical Cyclone*. Journals of the Atmospheric Sciences, 2014 , 71, 1443-1459	2.1	31
128	Measurements of nitrogen oxides at the tropopause: Attribution to convection and correlation with lightning. <i>Journal of Geophysical Research</i> , 2000 , 105, 3679-3700		31
127	A trajectory-based classification of ERA-Interim ice clouds in the region of the North Atlantic storm track. <i>Geophysical Research Letters</i> , 2016 , 43, 6657-6664	4.9	30
126	Life Cycle Study of a Diabatic Rossby Wave as a Precursor to Rapid Cyclogenesis in the North Atlantic Dynamics and Forecast Performance. <i>Monthly Weather Review</i> , 2011 , 139, 1861-1878	2.4	29
125	Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 6395-6403	6.8	29
124	The influence of the 1997 B 9 El Niß Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2001 , 127, 331-342	6.4	29
123	Verification of precipitation from regional climate simulations and remote-sensing observations with respect to ground-based observations in the upper Danube catchment. <i>Meteorologische Zeitschrift</i> , 2007 , 16, 275-293	3.1	28
122	A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 747-765	6.8	27
121	A 10-yr Climatology of Diabatic Rossby Waves in the Northern Hemisphere. <i>Monthly Weather Review</i> , 2013 , 141, 1139-1154	2.4	27
120	Midstratospheric ozone variability over Bern related to planetary wave activity during the winters 1994 1995 to 1998 1999. <i>Journal of Geophysical Research</i> , 2001 , 106, 7903-7916		27
119	Convective activity in an extratropical cyclone and its warm conveyor belt to case-study combining observations and a convection-permitting model simulation. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2019 , 145, 1406-1426	6.4	26
118	On the origin of 129I in rain water near Zfich. <i>Radiochimica Acta</i> , 2001 , 89, 815-822	1.9	26
117	The transatlantic dust transport from North Africa to the Americas Lts characteristics and source regions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 11,231-11,252	4.4	25
116	Climatology of potential vorticity streamers and associated isentropic transport pathways across PV gradient barriers. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 3802-3821	4.4	25
115	The Mineral Dust Cycle in EMAC 2.40: sensitivity to the spectral resolution and the dust emission scheme. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1611-1627	6.8	25
114	Large-scale wind and precipitation extremes in the Mediterranean: dynamical aspects of five selected cyclone events. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2016 , 142, 3097-3114	6.4	25

Northern Hemisphere Rossby Wave Initiation Events on the Extratropical Jet Climatological Analysis. <i>Journal of Climate</i> , 2018 , 31, 743-760	4.4	25	
An evaluation of the convection-permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2018 , 144, 744-764	6.4	25	
Large NAT particle formation by mother clouds: Analysis of SOLVE/THESEO-2000 observations. <i>Geophysical Research Letters</i> , 2002 , 29, 52-1	4.9	24	
When during Their Life Cycle Are Extratropical Cyclones Attended by Fronts?. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 149-165	6.1	24	
Assessment of an ensemble of oceanItmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. <i>Climate Dynamics</i> , 2018 , 51, 1023-1040	4.2	23	
Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 4533-4548	4.4	23	
Multi-model simulations of a convective situation in low-mountain terrain in central Europe. <i>Meteorology and Atmospheric Physics</i> , 2009 , 103, 95-103	2	23	
The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results. <i>Meteorologische Zeitschrift</i> , 2008 , 17, 849-866	3.1	23	
Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 1093-1100	6.8	23	
Objective classification of extratropical cyclogenesis. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2017 , 143, 1047-1061	6.4	21	
Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (1979\(\text{M}\)014). Geophysical Research Letters, 2017 , 44, 553-561	4.9	21	
A Lagrangian analysis of stratospheric ozone variability and long-term trends above Payerne (Switzerland) during 1970 2 001. <i>Journal of Geophysical Research</i> , 2002 , 107, ACL 2-1		21	
The influence of the 1997-99 El Nino Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2001 , 127, 331-342	6.4	21	
Flow-Dependent Reliability: A Path to More Skillful Ensemble Forecasts. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 1015-1026	6.1	21	
Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements in Atmospheric Deposition. <i>Environmental Science & Elements (Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements in Atmospheric Deposition. Environmental Science & Elements (Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements in Atmospheric Deposition. Environmental Science & Elements (Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements (Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements (Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements (Marine Primary Productivity as a Potential Indirect Source & Elements (Marine Primary Prima</i>	10.3	20	
Does the lower stratosphere provide predictability for month-ahead wind electricity generation in Europe?. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2017 , 143, 3025-3036	6.4	20	
Airborne lidar observations in the inflow region of a warm conveyor belt. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2011 , 137, 1257-1272	6.4	20	
Detection, tracking and event localization of jet stream features in 4-D atmospheric data. Geoscientific Model Development, 2012 , 5, 457-470	6.3	20	
	Analysis. Journal of Climate, 2018, 31, 743-760 An evaluation of the convection-permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 744-764 Large NAT particle formation by mother clouds: Analysis of SOLVE/THESEO-2000 observations. Geophysical Research Letters, 2002, 29, 52-1 When during Their Life Cycle Are Extratropical Cyclones Attended by Fronts?. Bulletin of the American Meteorological Society, 2018, 99, 149-165 Assessment of an ensemble of oceanBtmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Climate Dynamics, 2018, 51, 1023-1040 Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere. Journal of Geophysical Research Dr. Atmospheres, 2013, 118, 4533-4548 Multi-model simulations of a convective situation in low-mountain terrain in central Europe. Meteorology and Atmospheric Physics, 2009, 103, 95-103 The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results. Meteorologische Zeitschrift, 2008, 17, 849-866 Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms. Atmospheric Chemistry and Physics, 2003, 3, 1093-1100 Objective classification of extratropical cyclogenesis. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1047-1061 Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (19798014). Geophysical Research Letters, 2017, 44, 553-561 A Lagrangian analysis of stratospheric ozone variability and long-term trends above Payerne (Switzerland) during 19708001. Journal of Geophysical Research, 2002, 107, ACL 2-1 The influence of the 1997-99 El Nino Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 331-342 Flow-Dependent Reliability: A Path	Analysis. Journal of Climate, 2018, 31, 743-760 An evaluation of the convection-permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 744-764 Large NAT particle formation by mother clouds: Analysis of SOLVE/THESEO-2000 observations. Geophysical Research Letters, 2002, 29, 52-1 When during Their Life Cycle Are Extratropical Cyclones Attended by Fronts2. Bulletin of the American Meteorological Society, 2018, 99, 149-165 Assessment of an ensemble of ocean8tmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Climate Dynamics, 2018, 51, 1023-1040 Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4533-4548 Multi-model simulations of a convective situation in low-mountain terrain in central Europe. Meteorology and Atmospheric Physics, 2009, 103, 95-103 The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results. Meteorologische Zeitschrift, 2008, 17, 849-866 3.1 Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms. Atmospheric Chemistry and Physics, 2003, 3, 1093-1100 Objective classification of extratropical cyclogenesis. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1047-1061 Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (19792014). Geophysical Research Letters, 2017, 44, 553-561 A Lagrangian analysis of stratospheric ozone variability and long-term trends above Payerne (Switzerland) during 1970R001. Journal of Geophysical Research, 2002, 107, ACL 2-1 The influence of the 1997-99 El Nino Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific. Quarterly Journal of the Royal Meteorological Society, 2011, 127, 331-342 Flow-Dependent Reliability. A P	Analysis. Journal of Climate, 2018, 31, 743-760 An evaluation of the convection-permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 744-764 Large NAT particle formation by mother clouds: Analysis of SOLVE/THESEO-2000 observations. Geophysical Research Letters, 2002, 29, 52-1 When during Their Life Cycle Are Extratropical Cyclones Attended by Fronts?. Bulletin of the American Meteorological Society, 2018, 99, 149-165 Assessment of an ensemble of ocean@tmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Climate Dynamics, 2018, 51, 1023-1040 Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4533-4548 Multi-model simulations of a convective situation in low-mountain terrain in central Europe. Meteorology and Atmospheric Physics, 2009, 103, 95-103 The general observation period 2007 within the priority program on quantitative precipitation Forecasting. Concept and first results. Meteorologische Zeitschrift, 2008, 17, 843-866 Ultrathin Tropical Tropopause Clouds (UTTCS): II. Stabilization mechanisms. Atmospheric Chemistry and Physics, 2003, 3, 1093-1100 Objective classification of extratropical cyclogenesis. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1047-1061 Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (19792014). Geophysical Research Letters, 2017, 44, 533-561 A Lagrangian analysis of stratospheric ozone variability and long-term trends above Payerne (Switzerland) during 19702001. Journal of Geophysical Research, 2002, 107, ACL 2-1 The influence of the 1997-99 El Nino Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific. Quarterly Journal of the Royal Meteorological Society, 2011, 127, 331-342 Flow-Dependent Reliability: A Path t

95	Comparison of Fast In situ Stratospheric Hygrometer (FISH) measurements of water vapor in the upper troposphere and lower stratosphere (UTLS) with ECMWF (re)analysis data. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10803-10822	6.8	19
94	Planning aircraft measurements within a warm conveyor belt. Weather, 2014 , 69, 161-166	0.9	18
93	A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model. <i>Geoscientific Model Development</i> , 2013 , 6, 1925-1939	6.3	18
92	Synoptic tracer gradients in the upper troposphere over central Canada during the Stratosphere-Troposphere Experiments by Aircraft Measurements 1998 summer campaign. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 5-1		18
91	3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 7573-7583	6.8	17
90	Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 1183-1200	6.8	17
89	Potential vorticity structure of embedded convection in a warm conveyor belt and its relevance for large-scale dynamics. <i>Weather and Climate Dynamics</i> , 2020 , 1, 127-153	3.3	17
88	On the Co-Occurrence of Warm Conveyor Belt Outflows and PV Streamers*. <i>Journals of the Atmospheric Sciences</i> , 2014 , 71, 3668-3673	2.1	16
87	A Case Study of High-Impact Wet Snowfall in Northwest Germany (25½7 November 2005): Observations, Dynamics, and Forecast Performance. <i>Weather and Forecasting</i> , 2012 , 27, 1217-1234	2.1	16
86	THORPEX Research and the Science of Prediction. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, 807-830	6.1	15
85	The Microphysical Building Blocks of Low-Level Potential Vorticity Anomalies in an Idealized Extratropical Cyclone. <i>Journals of the Atmospheric Sciences</i> , 2017 , 74, 1403-1416	2.1	15
84	StratosphereEroposphere exchange (STE) in the vicinity of North Atlantic cyclones. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10939-10953	6.8	15
83	A new windstorm proxy from lake sediments: A comparison of geological and meteorological data from western Germany for the period 1965\(\bar{2}\)001. <i>Journal of Geophysical Research</i> , 2009 , 114,		15
82	Modification of Potential Vorticity near the Tropopause by Nonconservative Processes in the ECMWF Model. <i>Journals of the Atmospheric Sciences</i> , 2019 , 76, 1709-1726	2.1	14
81	Spatial coherency of extreme weather events in Germany and Switzerland. <i>International Journal of Climatology</i> , 2012 , 32, 1863-1874	3.5	14
80	Mesoscale modelling of vertical atmospheric transport in the Alps associated with the advection of a tropopause fold a winter ozone episode. <i>Atmospheric Environment</i> , 1999 , 33, 3613-3626	5.3	14
79	A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications 1997 , 123, 467		14
78	An algorithm for identifying the initiation of synoptic-scale Rossby waves on potential vorticity waveguides. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2016 , 142, 889-900	6.4	14

77	Marine versus Continental Sources of Iodine and Selenium in Rainfall at Two European High-Altitude Locations. <i>Environmental Science & Environmental & Environ</i>	10.3	13
76	A scaling relation for warm-phase orographic precipitation: a Lagrangian analysis for 2D mountains. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2015 , 141, 2185-2198	6.4	13
75	The Lagrangian analysis tool LAGRANTO Dersion 2.0 2015 ,		12
74	Verification of North Atlantic warm conveyor belt outflows in ECMWF forecasts. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2015 , 141, 1333-1344	6.4	12
73	Sampling of an STT event over the Eastern Mediterranean region by lidar and electrochemical sonde. <i>Annales Geophysicae</i> , 2005 , 23, 2039-2050	2	12
72	How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas). Weather and Climate Dynamics, 2020, 1, 597-615	3.3	12
71	The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979\(\text{D018} \)). Weather and Climate Dynamics, 2021, 2, 507-534	3.3	12
70	Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 5811-5835	6.8	11
69	Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 2015 , 67, 26032	2	11
68	Verification of quantitative precipitation forecasts on short time-scales: A fuzzy approach to handle timing errors with SAL. <i>Meteorologische Zeitschrift</i> , 2011 , 20, 95-105	3.1	11
67	The 1-way on-line coupled atmospheric chemistry model system MECO(n) [Part 3: Meteorological evaluation of the on-line coupled system. <i>Geoscientific Model Development</i> , 2012 , 5, 129-147	6.3	11
66	Clouds at the tropical tropopause: A case study during the APE-THESEO campaign over the western Indian Ocean. <i>Journal of Geophysical Research</i> , 2003 , 108,		11
65	Upstream development in idealized baroclinic wave experiments. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 1999 , 51, 574-587	2	11
64	. Tellus, Series A: Dynamic Meteorology and Oceanography, 1999 , 51, 574-587	2	11
63	On the Thermodynamic Preconditioning of Arctic Air Masses and the Role of Tropopause Polar Vortices for Cold Air Outbreaks From Fram Strait. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 11033-11050	4.4	11
62	Quantifying the role of individual diabatic processes for the formation of PV anomalies in a North Pacific cyclone. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2019 , 145, 2454-2476	6.4	10
61	Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 1653-1669	6.8	10
60	Tropopause level Rossby wave breaking in the Northern Hemisphere: a feature-based validation of the ECHAM5-HAM climate model. <i>International Journal of Climatology</i> , 2013 , 33, 3073-3082	3.5	10

59	Comparison of ERA40 cloud top phase with POLDER-1 observations. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		10
58	Stratospheric influence on ECMWF sub-seasonal forecast skill for energy-industry-relevant surface weather in European countries. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2020 , 146, 3675-	36 94	10
57	Drivers of <code>2H</code> variations in an idealized extratropical cyclone. <i>Geophysical Research Letters</i> , 2016 , 43, 5401-5408	4.9	10
56	A Lagrangian analysis of upper-tropospheric anticyclones associated with heat waves in Europe. Weather and Climate Dynamics, 2020 , 1, 191-206	3.3	9
55	A potential vorticity perspective on cyclogenesis over centre-eastern South America. <i>International Journal of Climatology</i> , 2021 , 41, 663-678	3.5	9
54	Effect of anthropogenic aerosol emissions on precipitation in warm conveyor belts in the western North Pacific in winter had model study with ECHAM6-HAM. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 6243-6255	6.8	8
53	A Trajectory-Based Investigation of Physical and Dynamical Processes That Govern the Temporal Evolution of the Subtropical Jet Streams over Africa. <i>Journals of the Atmospheric Sciences</i> , 2012 , 69, 16	0 2 -161	6 ⁸
52	Meteorological influences on the incidence of aneurysmal subarachnoid hemorrhage - a single center study of 511 patients. <i>PLoS ONE</i> , 2013 , 8, e81621	3.7	8
51	How Rossby wave breaking modulates the water cycle in the North Atlantic trade wind region. Weather and Climate Dynamics, 2021 , 2, 281-309	3.3	8
50	Water Vapor in the Asian Summer Monsoon Anticyclone: Comparison of Balloon-Borne Measurements and ECMWF Data. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 7053	4.4	7
49	Reply to comment by H. Teitelbaum et al. on A Lagrangian analysis of stratospheric ozone variability and long-term trends above Payerne (Switzerland) during 1970 2001 <i>Journal of Geophysical Research</i> , 2003, 108,		7
48	A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979 2017. Weather and Climate Dynamics, 2020, 1, 497-518	3.3	7
47	How representative were the meteorological conditions during the COPS field experiment in summer 2007?. <i>Meteorologische Zeitschrift</i> , 2010 , 19, 619-630	3.1	6
46	Atmospheric processes triggering the Central European floods in June 2013		6
45	Attribution of precipitation to cyclones and fronts over Europe in a kilometer-scale regional climate simulation. <i>Weather and Climate Dynamics</i> , 2020 , 1, 675-699	3.3	6
44	The complex life cycles of two long-lived potential vorticity cut-offs over Europe. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2018 , 144, 701-719	6.4	6
43	On the Time Evolution of Limited-Area Ensemble Variance: Case Studies with the Convection-Permitting Ensemble COSMO-E. <i>Journals of the Atmospheric Sciences</i> , 2019 , 76, 11-26	2.1	5
42	A new circulation type classification based upon Lagrangian air trajectories. <i>Frontiers in Earth Science</i> , 2014 , 2,	3.5	5

41	On studying the structure of synoptic systems. <i>Meteorological Applications</i> , 1997 , 4, 365-374	2.1	5
40	A global climatology of stratosphere-troposphere exchange using the ERA-interim dataset from 1979 to 2011		5
39	Deuterium excess as a proxy for continental moisture recycling and plant transpiration		5
38	The storm-track suppression over the western North Pacific from a cyclone life-cycle perspective. <i>Weather and Climate Dynamics</i> , 2021 , 2, 55-69	3.3	5
37	Observations and simulation of intense convection embedded in a warm conveyor belt Ihow ambient vertical wind shear determines the dynamical impact. <i>Weather and Climate Dynamics</i> , 2021 , 2, 89-110	3.3	5
36	A numerical process study on the rapid transport of stratospheric air down to the surface over western North America and the Tibetan Plateau. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6535-654	g ^{6.8}	4
35	Forecast, observation and modelling of a deep stratospheric intrusion event over Europe		4
34	Structure, Process, and Mechanism 2020 , 15-43		4
33	Investigations of Mesoscopic Complexity of Small Ice Crystals in Midlatitude Cirrus. <i>Geophysical Research Letters</i> , 2018 , 45, 11,465	4.9	4
32	Pollution patterns in the upper troposphere over Europe and Asia observed by CARIBIC. <i>Atmospheric Environment</i> , 2014 , 96, 245-256	5.3	3
31	Diabatic Rossby waves in the Southern Hemisphere. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2015 , 141, 3106-3117	6.4	3
30	DYNAMICAL METEOROLOGY Quasigeostrophic Theory 2015 , 393-403		3
29	Measuring variations of ¹⁸ O and ² H in atmospheric water vapour using laser spectroscopy: an instrument characterisation study 2012,		3
28	Ultrathin Tropical Tropopause Clouds (UTTCs): I. Cloud morphology and occurrence		3
27	Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe		3
26	The substructure of extremely hot summers in the Northern Hemisphere. <i>Weather and Climate Dynamics</i> , 2020 , 1, 45-62	3.3	3
25	Vertical cloud structure of warm conveyor belts 🖟 comparison and evaluation of ERA5 reanalysis, CloudSat and CALIPSO data. <i>Weather and Climate Dynamics</i> , 2020 , 1, 577-595	3.3	3
24	The role of airBea fluxes for the water vapour isotope signals in the cold and warm sectors of extratropical cyclones over the Southern Ocean. <i>Weather and Climate Dynamics</i> , 2021 , 2, 331-357	3.3	3

23	Sources and transport pathways of precipitating waters in cold-season deep North Atlantic cyclones. <i>Journals of the Atmospheric Sciences</i> , 2021 ,	2.1	3
22	A Lagrangian Perspective on Stable Water Isotopes During the West African Monsoon. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD034895	4.4	3
21	Comparison of Eulerian and Lagrangian moisture source diagnostics (the flood event in eastern Europe in May 2010		2
20	The role of airBea fluxes for the water vapour isotope signals in the cold and warm sectors of extratropical cyclones over the Southern Ocean		2
19	Global and Regional Perspectives 2020 , 89-140		2
18	Forecasted deep stratospheric intrusions over Central Europe: case studies and climatologies		2
17	Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 5477-5498	6.8	2
16	Widening the common space to reduce the gap between climate science and decision-making in industry. <i>Climate Services</i> , 2021 , 23, 100237	3.8	2
15	IWALAn Interactive Weather Analysis Laboratory. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, 903-909	6.1	1
14	The 1-way on-line coupled atmospheric chemistry model system MECO(n) IPart 3: Meteorological evaluation of the on-line coupled system 2011 ,		1
13	Disentangling different moisture transport pathways over the eastern subtropical North Atlantic using multi-platform isotope observations and high-resolution numerical modelling. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16319-16347	6.8	1
12	Transport timescales and tracer properties in the extratropical UTLS		1
11	StratosphereEroposphere exchange (STE) in the vicinity of North Atlantic cyclones		1
10	Comparison of in-situ FISH measurements of water vapor in the UTLS with ECMWF (re)analysis data		1
9	3-D model simulations of dynamical and microphysical interactions in pyro-convective clouds under idealized conditions		1
8	Effect of anthropogenic aerosol emissions on precipitation in warm conveyor belts in the western North Pacific in winter had model study with ECHAM6-HAM 2016 ,		1
7	Extreme wet seasons I their definition and relationship with synoptic-scale weather systems. Weather and Climate Dynamics, 2021 , 2, 71-88	3.3	1
6	A New Framework for Identifying and Investigating Seasonal Climate Extremes. <i>Journal of Climate</i> , 2021 , 34, 7761-7782	4.4	1

LIST OF PUBLICATIONS

5	Characterization of transport from the Asian summer monsoon anticyclone into the UTLS via shedding of low potential vorticity cutoffs. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 3841-3860	6.8	1
4	How intense daily precipitation depends on temperature and the occurrence of specific weather systems I an investigation with ERA5 reanalyses in the extratropical Northern Hemisphere. Weather and Climate Dynamics, 2022, 3, 391-411	3.3	1
3	Lagrangian formation pathways of moist anomalies in the trade-wind region during the dry season: two case studies from EUREC ⁴ A. Weather and Climate Dynamics, 2022, 3, 59-88	3.3	0
2	Systematic assessment of the diabatic processes that modify low-level potential vorticity in extratropical cyclones. <i>Weather and Climate Dynamics</i> , 2021 , 2, 1073-1091	3.3	O
1	Identification, characteristics and dynamics of Arctic extreme seasons. Weather and Climate Dynamics, 2022, 3, 89-111	3.3	