
Colin Crick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2238456/publications.pdf Version: 2024-02-01

COLIN CRICK

#	Article	IF	CITATIONS
1	Robust self-cleaning surfaces that function when exposed to either air or oil. Science, 2015, 347, 1132-1135.	12.6	1,494
2	Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation. Journal of Materials Chemistry A, 2013, 1, 5943.	10.3	306
3	Preparation and Characterisation of Superâ€Hydrophobic Surfaces. Chemistry - A European Journal, 2010, 16, 3568-3588.	3.3	267
4	An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films, 2011, 519, 3722-3727.	1.8	181
5	A physicochemical investigation of ionic liquid mixtures. Chemical Science, 2015, 6, 1101-1114.	7.4	171
6	Superhydrophobic Photocatalytic Surfaces through Direct Incorporation of Titania Nanoparticles into a Polymer Matrix by Aerosol Assisted Chemical Vapor Deposition. Advanced Materials, 2012, 24, 3505-3508.	21.0	167
7	Water droplet bouncing—a definition for superhydrophobic surfaces. Chemical Communications, 2011, 47, 12059.	4.1	125
8	Copper-based water repellent and antibacterial coatings by aerosol assisted chemical vapour deposition. Chemical Science, 2016, 7, 5126-5131.	7.4	87
9	The challenges, achievements and applications of submersible superhydrophobic materials. Chemical Society Reviews, 2021, 50, 6569-6612.	38.1	81
10	The combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of a gradating substitutional/interstitial N-doped anatase TiO2 thin-film; UVA and visible light photocatalytic activities. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 156-166.	3.9	60
11	Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons. ACS Nano, 2016, 10, 4847-4856.	14.6	52
12	A single step route to superhydrophobic surfaces through aerosol assisted deposition of rough polymer surfaces: duplicating the lotus effect. Journal of Materials Chemistry, 2009, 19, 1074-1076.	6.7	49
13	Precise Attoliter Temperature Control of Nanopore Sensors Using a Nanoplasmonic Bullseye. Nano Letters, 2015, 15, 553-559.	9.1	49
14	CVD of copper and copper oxide thin films via the in situ reduction of copper(ii) nitrate—a route to conformal superhydrophobic coatings. Journal of Materials Chemistry, 2011, 21, 14712.	6.7	48
15	A general method for the incorporation of nanoparticles into superhydrophobic films by aerosol assisted chemical vapour deposition. Journal of Materials Chemistry A, 2013, 1, 4336.	10.3	47
16	Superhydrophobic Surfaces as an On-Chip Microfluidic Toolkit for Total Droplet Control. Analytical Chemistry, 2013, 85, 5405-5410.	6.5	38
17	On-Demand Surface- and Tip-Enhanced Raman Spectroscopy Using Dielectrophoretic Trapping and Nanopore Sensing. ACS Photonics, 2016, 3, 1036-1044.	6.6	38
18	Covalently Attached Antimicrobial Surfaces Using BODIPY: Improving Efficiency and Effectiveness. ACS Applied Materials & Interfaces, 2018, 10, 98-104.	8.0	35

COLIN CRICK

#	Article	IF	CITATIONS
19	Low-Noise Plasmonic Nanopore Biosensors for Single Molecule Detection at Elevated Temperatures. ACS Photonics, 2017, 4, 2835-2842.	6.6	32
20	Self-Assembled Spherical Supercluster Metamaterials from Nanoscale Building Blocks. ACS Photonics, 2016, 3, 35-42.	6.6	30
21	Superhydrophobic polymer films via aerosol assisted deposition — Taking a leaf out of nature's book. Thin Solid Films, 2010, 518, 4328-4335.	1.8	29
22	Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing. ACS Applied Materials & Interfaces, 2015, 7, 18188-18194.	8.0	28
23	Superhydrophobic silica films on glass formed by hydrolysis of an acidic aerosol of tetraethylorthosilicate. Journal of Materials Chemistry, 2011, 21, 9362.	6.7	25
24	Relationship between surface hydrophobicity and water bounces – a dynamic method for accessing surface hydrophobicity. Journal of Materials Chemistry A, 2013, 1, 799-804.	10.3	19
25	Aerosol assisted deposition of melamine-formaldehyde resin: Hydrophobic thin films from a hydrophilic material. Thin Solid Films, 2011, 519, 2181-2186.	1.8	18
26	Evaluating the resilience of superhydrophobic materials using the slip-length concept. Journal of Materials Chemistry A, 2018, 6, 4458-4465.	10.3	17
27	Advanced analysis of nanoparticle composites – a means toward increasing the efficiency of functional materials. RSC Advances, 2015, 5, 53789-53795.	3.6	16
28	Fabrication of optimized oil–water separation devices through the targeted treatment of silica meshes. Science and Technology of Advanced Materials, 2015, 16, 055006.	6.1	16
29	A general formulation approach for the fabrication of water repellent materials: how composition can impact resilience and functionality. Molecular Systems Design and Engineering, 2020, 5, 477-483.	3.4	14
30	Superhydrophobic silica wool—a facile route to separating oil and hydrophobic solvents from water. Science and Technology of Advanced Materials, 2014, 15, 065003.	6.1	13
31	Pigmented self-cleaning coatings with enhanced UV resilience <i>via</i> the limitation of photocatalytic activity and its effects. Molecular Systems Design and Engineering, 2020, 5, 876-881.	3.4	13
32	Highly rough surface coatings via the ambient temperature deposition of thermosetting polymers. Journal of Materials Chemistry A, 2019, 7, 7333-7337.	10.3	10
33	Heat-Treated Micronized Polyethylene Powder for Efficient Oil/Water Separating Filters. Materials, 2020, 13, 3160.	2.9	10
34	Suction or gravity-fed oil-water separation using PDMS-coated glass filters. Sustainable Materials and Technologies, 2021, 29, e00321.	3.3	8
35	Investigating the viability of sulfur polymers for the fabrication of photoactive, antimicrobial, water repellent coatings. Journal of Materials Chemistry B, 2022, 10, 4153-4162.	5.8	7
36	Image analysis methodology for a quantitative evaluation of coating abrasion resistance. Applied Materials Today, 2021, 25, 101203.	4.3	6

COLIN CRICK

#	Article	IF	CITATIONS
37	Aerosol Assisted Depositions of Polymers Using an Atomiser Delivery System. Journal of Nanoscience and Nanotechnology, 2011, 11, 8358-8362.	0.9	4
38	Carbon Nanofiber/SiO2 Nanoparticle/HDPE Composites as Physically Resilient and Submersible Water-Repellent Coatings on HDPE Substrates. ACS Applied Nano Materials, 0, , .	5.0	2
39	Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging. Journal of Visualized Experiments, 2016, , .	0.3	1
40	Approaches for Evaluating and Engineering Resilient Superhydrophobic Materials. , 2020, , .		0
41	Study on the Influence of Polymer/Particle Properties on the Resilience of Superhydrophobic Coatings. ACS Omega, 0, , .	3.5	0