Karen Smeets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2238216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interactive toxicity of copper and cadmium in regenerating and adult planarians. Chemosphere, 2022, 297, 133819.	8.2	4
2	Dactylogyridae 2022: a meta-analysis of phylogenetic studies and generic diagnoses of parasitic flatworms using published genetic and morphological data. International Journal for Parasitology, 2022, 52, 427-457.	3.1	8
3	Population genomics of introduced Nile tilapia <i>Oreochromis niloticus</i> (Linnaeus, 1758) in the Democratic Republic of the Congo: Repeated introductions since colonial times with multiple sources. Molecular Ecology, 2022, 31, 3304-3322.	3.9	5
4	Somewhere I belong: phylogeny and morphological evolution in a speciesâ€rich lineage of ectoparasitic flatworms infecting cichlid fishes. Cladistics, 2022, 38, 465-512.	3.3	10
5	Explosive networking: The role of adaptive host radiations and ecological opportunity in a speciesâ€ r ich host–parasite assembly. Ecology Letters, 2022, 25, 1795-1812.	6.4	8
6	The cichlid–Cichlidogyrus network: a blueprint for a model system of parasite evolution. Hydrobiologia, 2021, 848, 3847-3863.	2.0	18
7	Differential effect of silver nanoparticles on the microbiome of adult and developing planaria. Aquatic Toxicology, 2021, 230, 105672.	4.0	4
8	Reactive oxygen species rescue regeneration after silencing the MAPK–ERK signaling pathway in Schmidtea mediterranea. Scientific Reports, 2021, 11, 881.	3.3	23
9	A Spatiotemporal Characterisation of Redox Molecules in Planarians, with a Focus on the Role of Glutathione during Regeneration. Biomolecules, 2021, 11, 714.	4.0	5
10	Is †everything everywhere'? Unprecedented cryptic diversity in the cosmopolitan flatworm <i>Gyratrix hermaphroditus</i> . Zoologica Scripta, 2021, 50, 837-851.	1.7	8
11	DNA diet profiles with highâ€resolution animal tracking data reveal levels of prey selection relative to habitat choice in a crepuscular insectivorous bird. Ecology and Evolution, 2020, 10, 13044-13056.	1.9	14
12	Physico-chemical characterisation of the fraction of silver (nano)particles in pristine food additive E174 and in E174-containing confectionery. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 1831-1846.	2.3	15
13	The first mitochondrial genomes of endosymbiotic rhabdocoels illustrate evolutionary relaxation of atp8 and genome plasticity in flatworms. International Journal of Biological Macromolecules, 2020, 162, 454-469.	7.5	16
14	Regenerative responses following DNA damage: β-catenin mediates head regrowth in the planarian Schmidtea mediterranea. Journal of Cell Science, 2020, 133, .	2.0	3
15	<i>In vivo</i> Toxicity Assessment of Silver Nanoparticles in Homeostatic versus Regenerating Planarians. Nanotoxicology, 2019, 13, 476-491.	3.0	21
16	Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Scientific Reports, 2018, 8, 3008.	3.3	26
17	Planarians Customize Their Stem Cell Responses Following Genotoxic Stress as a Function of Exposure Time and Regenerative State. Toxicological Sciences, 2018, 162, 251-263.	3.1	9
18	A carcinogenic trigger to study the function of tumor suppressor genes in <i>Schmidtea mediterranea (i) DMM Disease Models and Mechanisms, 2018, 11</i>	2.4	13

KAREN SMEETS

#	Article	IF	CITATIONS
19	Stem cell proliferation patterns as an alternative for in vivo prediction and discrimination of carcinogenic compounds. Scientific Reports, 2017, 7, 45616.	3.3	5
20	Do you have the nerves to regenerate? The importance of neural signalling in the regeneration process. Developmental Biology, 2016, 409, 4-15.	2.0	36
21	Toxic effects of cadmium on flatworm stem cell dynamics: A transcriptomic and ultrastructural elucidation of underlying mechanisms. Environmental Toxicology, 2016, 31, 1217-1228.	4.0	4
22	Redox-Related Mechanisms to Rebalance Cancer-Deregulated Cell Growth. Current Drug Targets, 2016, 17, 1414-1437.	2.1	4
23	Toxicity profiles and solvent–toxicant interference in the planarian <i>Schmidtea mediterranea</i> after dimethylsulfoxide (DMSO) exposure. Journal of Applied Toxicology, 2015, 35, 319-326.	2.8	24
24	Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-19.	4.0	96
25	An Adult Stem Cell Proliferation Assay in the Flatworm Model Macrostomum lignano to Predict the Carcinogenicity of Compounds. Applied in Vitro Toxicology, 2015, 1, 213-219.	1.1	2
26	Renal cells exposed to cadmium <i>in vitro</i> and <i>in vivo</i> : normalizing gene expression data. Journal of Applied Toxicology, 2015, 35, 478-484.	2.8	14
27	Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Archives of Toxicology, 2015, 89, 2273-2289.	4.2	86
28	The role of the kinase <scp>OXI1</scp> in cadmium―and copperâ€induced molecular responses in <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 1228-1238.	5.7	50
29	Cadmium-Induced Pathologies: Where Is the Oxidative Balance Lost (or Not)?. International Journal of Molecular Sciences, 2013, 14, 6116-6143.	4.1	240
30	Physiological and molecular characterisation of cadmium stress in Schmidtea mediterranea. International Journal of Developmental Biology, 2012, 56, 183-191.	0.6	32
31	Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. Journal of Neuroscience Research, 2012, 90, 60-71.	2.9	59
32	Reference genes for qPCR assays in toxic metal and salinity stress in two flatworm model organisms. Ecotoxicology, 2012, 21, 475-484.	2.4	16
33	The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 2011, 168, 309-316.	3.5	298
34	Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions. Journal of Environmental Radioactivity, 2011, 102, 638-645.	1.7	37
35	Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots. Journal of Environmental Radioactivity, 2011, 102, 630-637.	1.7	35
36	Cadmium stress: an oxidative challenge. BioMetals, 2010, 23, 927-940.	4.1	823

KAREN SMEETS

#	Article	IF	CITATIONS
37	Selection of reference genes for gene expression studies in rat oligodendrocytes using quantitative real time PCR. Journal of Neuroscience Methods, 2010, 187, 78-83.	2.5	70
38	Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Functional Plant Biology, 2010, 37, 532.	2.1	97
39	Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. Journal of Plant Physiology, 2010, 167, 247-254.	3.5	155
40	Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. Journal of Plant Physiology, 2009, 166, 1982-1992.	3.5	135
41	Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2008, 46, 987-996.	5.8	63
42	Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta, 2008, 227, 1343-1349.	3.2	309
43	Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiology and Biochemistry, 2008, 46, 212-218.	5.8	64
44	Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environmental and Experimental Botany, 2008, 63, 1-8.	4.2	181
45	Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology, 2007, 236, 29-41.	4.2	151
46	Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiologia Plantarum, 2007, 129, 519-528.	5.2	195
47	Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytologist, 2007, 173, 495-508.	7.3	177
48	Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiology and Biochemistry, 2005, 43, 437-444.	5.8	262