Sandrine Morandat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2238004/publications.pdf

Version: 2024-02-01

516710 434195 39 985 16 31 citations g-index h-index papers 39 39 39 1781 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oxidative stability of encapsulated sunflower oil: effect of protein-polysaccharide mixtures and long-term storage. Journal of Food Measurement and Characterization, 2022, 16, 1483-1493.	3.2	4
2	Serum and Soleus Metabolomics Signature of Klf10 Knockout Mice to Identify Potential Biomarkers. Metabolites, 2022, 12, 556.	2.9	7
3	Co-encapsulation of vegetable oils with phenolic antioxidants and evaluation of their oxidative stability under long-term storage conditions. LWT - Food Science and Technology, 2021, 142, 111033.	5. 2	12
4	KrÃ⅓ppelâ€like factor 10 regulates the contractile properties of skeletal muscle fibers in mice. Muscle and Nerve, 2021, 64, 765-769.	2.2	8
5	First step to the improvement of the blood brain barrier passage of atazanavir encapsulated in sustainable bioorganic vesicles. International Journal of Pharmaceutics, 2020, 587, 119604.	5.2	4
6	Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1489-1501.	2.6	11
7	Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids, 2019, 95, 105-115.	10.7	41
8	A Novel Nitrone-Trolox Conjugate Inhibits Membrane Lipid Oxidation Through Synergistic Antioxidant Effects. Biophysical Journal, 2019, 116, 227a.	0.5	1
9	Flax phenolic compounds as inhibitors of lipid oxidation: Elucidation of their mechanisms of action. Food Chemistry, 2019, 274, 651-658.	8.2	30
10	Antioxidant and Membrane Binding Properties of Serotonin Protect Lipids from Oxidation. Biophysical Journal, 2017, 112, 1863-1873.	0.5	66
11	Synthesis, iron(III) complexation properties, molecular dynamics simulations and P.Âaeruginosa siderophore-like activity of two pyoverdine analogs. European Journal of Medicinal Chemistry, 2017, 137, 338-350.	5.5	8
12	Cholesterol-nitrone conjugates as protective agents against lipid oxidation: A model membrane study. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2495-2504.	2.6	8
13	Hematin loses its membranotropic activity upon oligomerization into malaria pigment. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2952-2959.	2.6	1
14	Correction to "Topological Effects and Binding Modes Operating with Multivalent Iminosugar-Based Glycoclusters and Mannosidases― Journal of the American Chemical Society, 2014, 136, 6773-6773.	13.7	2
15	PBN derived amphiphilic spin-traps. II/Study of their antioxidant properties in biomimetic membranes. Colloids and Surfaces B: Biointerfaces, 2014, 113, 384-393.	5.0	6
16	DOPC/DPPC Fluid-Gel Phase Segregation in Supported Lipid Membranes Prepared by Fusion on Thiol-Modified Gold Substrates. Journal of Bionanoscience, 2014, 8, 462-472.	0.4	0
17	Topological Effects and Binding Modes Operating with Multivalent Iminosugar-Based Glycoclusters and Mannosidases. Journal of the American Chemical Society, 2013, 135, 18427-18435.	13.7	80
18	Probing the Nature of the Cluster Effect Observed with Synthetic Multivalent Galactosides and Peanut Agglutinin Lectin. Chemistry - A European Journal, 2013, 19, 729-738.	3.3	22

#	Article	IF	CITATIONS
19	Atomic force microscopy of model lipid membranes. Analytical and Bioanalytical Chemistry, 2013, 405, 1445-1461.	3.7	55
20	Titanium Dioxide Nanoparticles Disturb the Fibronectin-Mediated Adhesion and Spreading of Pre-osteoblastic Cells. Langmuir, 2012, 28, 13660-13667.	3.5	10
21	Preosteoblasts and fibroblasts respond differently to anatase titanium dioxide nanoparticles: A cytotoxicity and inflammation study. Colloids and Surfaces B: Biointerfaces, 2012, 90, 68-74.	5.0	24
22	The Potent Antimalarial Peptide Cyclosporin A Induces the Aggregation and Permeabilization of Sphingomyelin-Rich Membranes. Langmuir, 2011, 27, 9465-9472.	3.5	9
23	The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2973-2980.	2.6	128
24	Cytochrome c provokes the weakening of zwitterionic membranes as measured by force spectroscopy. Colloids and Surfaces B: Biointerfaces, 2011, 82, 111-117.	5.0	9
25	Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids and Surfaces B: Biointerfaces, 2010, 79, 33-40.	5.0	33
26	The Potent Antimalarial Drug Cyclosporin A Preferentially Destabilizes Sphingomyelin-Rich Membranes. Langmuir, 2010, 26, 1960-1965.	3.5	19
27	Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 750-765.	2.6	131
28	Cytochrome c interaction with neutral lipid membranes: influence of lipid packing and protein charges. Chemistry and Physics of Lipids, 2009, 162, 17-24.	3.2	9
29	Development of immobilization technique for liver microsomes. Colloids and Surfaces B: Biointerfaces, 2009, 68, 178-183.	5.0	9
30	Activity of immobilised rat hepatic microsomal CYP2E1 using alumina membrane as a support. New Biotechnology, 2009, 26, 222-228.	4.4	5
31	Interaction of non-ionic detergents with biomembranes at the nanoscale observed by atomic force microscopy. International Journal of Nanotechnology, 2008, 5, 769.	0.2	5
32	Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2300-2309.	2.6	42
33	Real-Time Atomic Force Microscopy Reveals Cytochrome c-Induced Alterations in Neutral Lipid Bilayers. Langmuir, 2007, 23, 10929-10932.	3.5	12
34	Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2007, 55, 179-184.	5.0	38
35	Membrane Resistance to Triton X-100 Explored by Real-Time Atomic Force Microscopy. Langmuir, 2006, 22, 5786-5791.	3.5	52
36	Adsorption of a phospholipid-hydroperoxide glutathione peroxidase into phospholipid monolayers at the air–water interface. Colloids and Surfaces B: Biointerfaces, 2004, 35, 99-105.	5.0	5

#	Article	IF	CITATIONS
37	PBN Derived Amphiphilic Spin-Traps. I/Synthesis and Study of Their Miscibility with Polyunsaturated Phospholipids. Langmuir, 2003, 19, 9699-9705.	3.5	9
38	Plasmalogens protect unsaturated lipids against UV-induced oxidation in monolayer. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1616, 137-146.	2.6	32
39	Cholesterol-dependent insertion of glycosylphosphatidylinositol-anchored enzyme. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 473-478.	2.6	38