Ana Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2237731/publications.pdf Version: 2024-02-01

ANA SOTO

#	Article	IF	CITATIONS
1	Gasoline desulfurization using extraction with [C ₈ mim][BF ₄] ionic liquid. AICHE Journal, 2007, 53, 3108-3115.	1.8	174
2	Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria, 2010, 294, 39-48.	1.4	167
3	Solvent extraction of thiophene from n-alkanes (C7, C12, and C16) using the ionic liquid [C8mim][BF4]. Journal of Chemical Thermodynamics, 2008, 40, 966-972.	1.0	149
4	Partitioning of antibiotics in a two-liquid phase system formed by water and a room temperature ionic liquid. Separation and Purification Technology, 2005, 44, 242-246.	3.9	125
5	Extractive and oxidative-extractive desulfurization of fuels with ionic liquids. Fuel, 2014, 117, 882-889.	3.4	124
6	Physical and Excess Properties for Binary Mixtures of 1-Methyl-3-Octylimidazolium Tetrafluoroborate, [Omim][BF4], Ionic Liquid with Different Alcohols. Journal of Solution Chemistry, 2006, 35, 63-78.	0.6	117
7	1-Ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide as solvent for the separation of aromatic and aliphatic hydrocarbons by liquid extraction – extension to C7- and C8-fractions. Green Chemistry, 2008, 10, 1294.	4.6	116
8	Title is missing!. Journal of Solution Chemistry, 2003, 32, 53-63.	0.6	114
9	Thiophene separation from aliphatic hydrocarbons using the 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Fluid Phase Equilibria, 2008, 270, 97-102.	1.4	112
10	Phase behaviour of 1-methyl-3-octylimidazolium bis[trifluoromethylsulfonyl]imide with thiophene and aliphatic hydrocarbons: The influence of n-alkane chain length. Fluid Phase Equilibria, 2008, 263, 176-181.	1.4	108
11	Bis{(trifluoromethyl)sulfonyl}amide ionic liquids as solvents for the extraction of aromatic hydrocarbons from their mixtures with alkanes: effect of the nature of the cation. Green Chemistry, 2009, 11, 365-372.	4.6	104
12	Thermodynamics of Diglycine and Triglycine in Aqueous NaCl Solutions: Apparent Molar Volume, Isentropic Compressibility, and Refractive Index. Journal of Solution Chemistry, 2004, 33, 11-21.	0.6	101
13	Absorption of Carbon Dioxide in Two Binary Mixtures of Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 5975-5984.	1.8	101
14	Volumetric and Viscosity Study for the Mixtures of 2-Ethoxy-2-methylpropane, Ethanol, and 1-Ethyl-3-methylimidazolium Ethyl Sulfate Ionic Liquid. Journal of Chemical & Engineering Data, 2006, 51, 1453-1457.	1.0	100
15	Use of a green and cheap ionic liquid to purify gasoline octane boosters. Green Chemistry, 2007, 9, 247-253.	4.6	91
16	Citrus essential oil terpenless by extraction using 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid: Effect of the temperature. Chemical Engineering Journal, 2007, 133, 213-218.	6.6	81
17	Enhanced oil recovery using the ionic liquid trihexyl(tetradecyl)phosphonium chloride: phase behaviour and properties. RSC Advances, 2012, 2, 9392.	1.7	81
18	Experimental Determination of LiquidⰒLiquid Equilibrium Using Ionic Liquids: tert-Amyl Ethyl Ether + Ethanol + 1-Octyl-3-Methylimidazolium Chloride System at 298.15 K. Journal of Chemical & Engineering Data, 2004, 49, 514-517.	1.0	78

Ανα Soto

#	Article	IF	CITATIONS
19	Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether. Fluid Phase Equilibria, 2006, 242, 164-168.	1.4	78
20	tert-Amyl Ethyl Ether Separation from Its Mixtures with Ethanol Using the 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid:Â Liquidâ^'Liquid Equilibrium. Industrial & Engineering Chemistry Research, 2004, 43, 8323-8327.	1.8	77
21	(Liquid+liquid) equilibria of [C8mim][NTf2] ionic liquid with a sulfur-component and hydrocarbons. Journal of Chemical Thermodynamics, 2008, 40, 265-270.	1.0	77
22	Essential oil terpenless by extraction using organic solvents or ionic liquids. AICHE Journal, 2006, 52, 2089-2097.	1.8	72
23	A thermodynamic study on binary and ternary mixtures of acetonitrile, water and butyl acetate. Fluid Phase Equilibria, 2002, 203, 83-98.	1.4	70
24	Experimental data and modelling of apparent molar volumes, isentropic compressibilities and refractive indices in aqueous solutions of glycine+NaCl. Biophysical Chemistry, 1998, 74, 165-173.	1.5	69
25	Physical and equilibrium properties of diisopropyl ether+isopropyl alcohol+water system. Fluid Phase Equilibria, 2000, 170, 113-126.	1.4	69
26	Evaluation of the polysubstituted pyridinium ionic liquid [hmmpy][Ntf2] as a suitable solvent for desulfurization: Phase equilibria. Journal of Chemical Thermodynamics, 2010, 42, 712-718.	1.0	66
27	Physico-chemical Properties of Binary and Ternary Mixtures of Ethyl Acetate + Ethanol + 1-Butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide at 298.15ÂK and Atmospheric Pressure. Journal of Solution Chemistry, 2010, 39, 371-383.	0.6	65
28	Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids. Journal of Chemical Thermodynamics, 2014, 77, 197-205.	1.0	65
29	Desulfurization of fuel-oils with [C2mim][NTf2]: A comparative study. Journal of Chemical Thermodynamics, 2013, 57, 248-255.	1.0	61
30	VLE Measurements of Binary Mixtures of Methanol, Ethanol, 2-Methoxy-2-methylpropane, and 2-Methoxy-2-methylbutane at 101.32 kPa. Journal of Chemical & Engineering Data, 1996, 41, 718-723.	1.0	59
31	Desulfurization of fuels by liquid–liquid extraction with 1-ethyl-3-methylimidazolium ionic liquids. Fluid Phase Equilibria, 2013, 356, 126-135.	1.4	59
32	Characterization and interfacial properties of the surfactant ionic liquid 1-dodecyl-3-methyl imidazolium acetate for enhanced oil recovery. RSC Advances, 2015, 5, 37392-37398.	1.7	59
33	Liquidâ~'Liquid Equilibria for Systems Composed by 1-Methyl-3-octylimidazolium Tetrafluoroborate Ionic Liquid, Thiophene, and <i>n</i> -Hexane or Cyclohexane. Journal of Chemical & Engineering Data, 2007, 52, 1729-1732.	1.0	58
34	Mixtures of ionic liquids as more efficient media for cellulose dissolution. Carbohydrate Polymers, 2017, 178, 277-285.	5.1	58
35	Densities, refractive indices, and excess molar volumes of the ternary systems water + methanol + 1-octanol and water + ethanol + 1-octanol and their binary mixtures at 298.15 K. Journal of Chemical & Engineering Data, 1993, 38, 336-340.	1.0	57
36	Liquid–liquid equilibrium and interfacial tension of the ternary system heptane+thiophene+1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Fluid Phase Equilibria, 2010, 298, 240-245.	1.4	56

ΑΝΑ ΣΟΤΟ

#	Article	IF	CITATIONS
37	Extraction Ability of Nitrogen-Containing Compounds Involved in the Desulfurization of Fuels by Using Ionic Liquids. Journal of Chemical & Engineering Data, 2010, 55, 3262-3267.	1.0	56
38	Physical properties and phase equilibria of the system isopropyl acetate+isopropanol+1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide. Fluid Phase Equilibria, 2010, 287, 84-94.	1.4	55
39	Mixtures of Ethanol and the Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate for the Fractionated Solubility of Biopolymers of Lignocellulosic Biomass. Industrial & Engineering Chemistry Research, 2014, 53, 11850-11861.	1.8	55
40	Characterization and phase behavior of the surfactant ionic liquid tributylmethylphosphonium dodecylsulfate for enhanced oil recovery. Fluid Phase Equilibria, 2016, 417, 87-95.	1.4	55
41	Improved concentration of citrus essential oil by solvent extraction with acetate ionic liquids. Fluid Phase Equilibria, 2014, 361, 37-44.	1.4	54
42	Deterpenation of Citrus Essential Oil by Liquidâ^'Liquid Extraction with 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids. Journal of Chemical & Engineering Data, 2011, 56, 1273-1281.	1.0	51
43	Effect of the cation and the anion of an electrolyte on the solubility of dl-aminobutyric acid in aqueous solutions: measurement and modelling. Biophysical Chemistry, 1998, 73, 77-83.	1.5	48
44	Hexyl dimethylpyridinium ionic liquids for desulfurization of fuels. Effect of the position of the alkyl side chains. Fluid Phase Equilibria, 2012, 314, 107-112.	1.4	48
45	Enhanced Oil Recovery with the Ionic Liquid Trihexyl(tetradecyl)phosphonium Chloride: A Phase Equilibria Study at 75 °C. Energy & Fuels, 2013, 27, 5806-5810.	2.5	48
46	Purification of ethyl tert-butyl ether from its mixtures with ethanol by using an ionic liquid. Chemical Engineering Journal, 2006, 115, 219-223.	6.6	47
47	Measurement and Correlation of Liquidâ^'Liquid Equilibria of Two Imidazolium Ionic Liquids with Thiophene and Methylcyclohexane. Journal of Chemical & Engineering Data, 2007, 52, 2409-2412.	1.0	47
48	Physical and excess properties of (methyl acetate+methanol+1-octyl-3-methyl-imidazolium) Tj ETQq0 0 0 rgBT /C Journal of Chemical Thermodynamics, 2009, 41, 1317-1323.	overlock 10 1.0) Tf 50 307 1 46
49	A comparative study on solvents for separation of tert-amyl ethyl ether and ethanol mixtures. New experimental data for 1-ethyl-3-methyl imidazolium ethyl sulfate ionic liquid. Chemical Engineering Science, 2006, 61, 6929-6935.	1.9	44
50	Citrus Essential Oil Deterpenation by Liquid-Liquid Extraction. Canadian Journal of Chemical Engineering, 2008, 83, 366-370.	0.9	44
51	Thermophysical Characterization of the Mixtures of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol. Journal of Chemical & Engineering Data, 2016, 61, 2299-2310.	1.0	43
52	Physical Properties of Binary and Ternary Mixtures of Ethyl Acetate, Ethanol, and 1-Octyl-3-methyl-imidazolium Bis(trifluoromethylsulfonyl)imide at 298.15 K. Journal of Chemical & Engineering Data, 2009, 54, 1022-1028.	1.0	42
53	VLE for water + ethanol + 1-octanol mixtures. Experimental measurements and correlations. Fluid Phase Equilibria, 1996, 122, 117-129.	1.4	41
54	Liquidâ~'Liquid Equilibria for [C ₈ mim][NTf ₂] + Thiophene + 2,2,4-Trimethylpentane or + Toluene. Journal of Chemical & Engineering Data, 2008, 53, 1750-1755.	1.0	41

ΑΝΑ ΣΟΤΟ

#	Article	IF	CITATIONS
55	lsobaric vapour–liquid equilibria and physical properties for isopropyl acetate+isopropanol+1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide mixtures. Fluid Phase Equilibria, 2011, 300, 162-171.	1.4	40
56	Liquid–Liquid Equilibria of Linalool + Ethanol + Water, Water + Ethanol + Limonene, and Limonene + Linalool + Water Systems. Journal of Solution Chemistry, 2004, 33, 561-569.	0.6	39
57	Liquid-liquid Equilibria of ([C2mim][EtSO4] + Thiophene + 2,2,4-Trimethylpentane) andÂ([C2mim][EtSO4]) Tj ET 1355-1363.	Qq1 1 0.7 0.6	84314 rgB 39
58	Effect of cation and anion of an electrolyte on apparent molar volume, isentropic compressibility and refractive index of glycine in aqueous solutions. Biophysical Chemistry, 1999, 76, 73-82.	1.5	38
59	Densities, Speeds of Sound, Refractive Indices, and the Corresponding Changes of Mixing at 25 °C and Atmospheric Pressure for Systems Composed by Ethyl Acetate, Hexane, and Acetone. Journal of Chemical & Engineering Data, 2001, 46, 1176-1180.	1.0	38
60	Vaporâ^'Liquid Equilibrium of the Ternary System Ethyl Acetate + Hexane + Acetone at 101.32 kPa. Journal of Chemical & Engineering Data, 2002, 47, 849-854.	1.0	38
61	Essential oil deterpenation by solvent extraction using 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate ionic liquid. Fluid Phase Equilibria, 2010, 296, 149-153.	1.4	37
62	Carbon dioxide absorption in the ionic liquid 1-ethylpyridinium ethylsulfate and in its mixtures with another ionic liquid. International Journal of Greenhouse Gas Control, 2013, 18, 296-304.	2.3	36
63	Efficiency of hydrophobic phosphonium ionic liquids and DMSO as recyclable cellulose dissolution and regeneration media. RSC Advances, 2017, 7, 17451-17461.	1.7	36
64	Non-ideal behavior of ionic liquid mixtures to enhance CO2 capture. Fluid Phase Equilibria, 2017, 450, 175-183.	1.4	36
65	The effect of temperature on polyethylene glycol (4000 or 8000)–(sodium or ammonium) sulfate Aqueous Two Phase Systems. Fluid Phase Equilibria, 2016, 428, 95-101.	1.4	34
66	Ionic liquids for low-tension oil recovery processes: Phase behavior tests. Journal of Colloid and Interface Science, 2017, 504, 404-416.	5.0	34
67	Measurements of the density, refractive index, electrical conductivity, thermal conductivity and dynamic viscosity for tributylmethylphosphonium and methylsulfate based ionic liquids. Thermochimica Acta, 2018, 664, 81-90.	1.2	34
68	Molar Volumes, Molar Refractions, and Isentropic Compressibilities of (Ethanol + Methanol +) Tj ETQq0 0 0 rgBT of Chemical & Engineering Data, 1997, 42, 721-726.	Overlock 1.0	10 Tf 50 227 33
69	Propanediols for separation of citrus oil: liquid–liquid equilibria of limonene + linalool + (1,2-propanediol or 1,3-propanediol). Fluid Phase Equilibria, 2003, 211, 129-140.	1.4	32
70	Viscosities and Volumetric Properties of Binary and Ternary Mixtures of Tris(2-hydroxyethyl) Methylammonium Methylsulfate + Water + Ethanol at 298.15 K. Journal of Chemical & Engineering Data, 2008, 53, 770-775.	1.0	29
71	Liquid-liquid equilibria of mutually immiscible ionic liquids with a common anion of basic character. Journal of Chemical Thermodynamics, 2016, 102, 12-21.	1.0	29
72	Densities, Refractive Indices, Speeds of Sound, and Isentropic Compressibilities of Water + Methanol + 2-Methoxy-2-methylbutane at 298.15 K. Journal of Chemical & Engineering Data, 1996, 41, 724-727.	1.0	28

ΑΝΑ ΣΟΤΟ

#	Article	IF	CITATIONS
73	Interactions of DL-serine and L-serine with NaCl and KCl in aqueous solutions. Journal of Solution Chemistry, 1997, 26, 941-955.	0.6	28
74	(Vapour+liquid) equilibrium of (DIPE+IPA+water) at 101.32kPa. Journal of Chemical Thermodynamics, 2003, 35, 871-884.	1.0	28
75	Liquidâ~'Liquid Equilibrium of Diisopropyl Ether + Ethanol + Water System at Different Temperatures. Journal of Chemical & Engineering Data, 2002, 47, 529-532.	1.0	27
76	Interaction of DL-threonine with NaCl and NaNO3in aqueous solutions: e.m.f. measurements with ion-selective electrodes. Journal of Chemical Thermodynamics, 1997, 29, 609-622.	1.0	26
77	Measurements and modelling of the solubility of a mixture of two amino acids in aqueous solutions. Fluid Phase Equilibria, 1999, 158-160, 893-901.	1.4	26
78	Liquid–liquid equilibria for butyl tert-butyl ether + (methanol or ethanol) + water at several temperatures. Fluid Phase Equilibria, 2004, 224, 185-192.	1.4	26
79	Surface Tension of Binary Mixtures of 1-Alkyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids with Alcohols. Journal of Solution Chemistry, 2014, 43, 404-420.	0.6	26
80	Improved Reactivity of Cellulose via Its Crystallinity Reduction by Nondissolving Pretreatment with an Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2019, 7, 9164-9171.	3.2	26
81	Liquidâ€liquid equilibria of water + methanol + (MTBE or TAME) mixtures. Canadian Journal of Chemical Engineering, 1994, 72, 935-938.	0.9	25
82	Activity coefficients of the electrolyte and the amino acid in water + NaNO3 + glycine and water + NaCl + dl-methionine systems at 298.15 K. Biophysical Chemistry, 1997, 67, 97-105.	1.5	25
83	Liquid–liquid equilibria of limonene+linalool+diethylene glycol system at different temperatures. Chemical Engineering Journal, 2002, 89, 223-227.	6.6	25
84	Phase behavior of the surfactant ionic liquid trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate with water and dodecane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 50-59.	2.3	25
85	Measurement and PC-SAFT modelling of three-phase behaviour. Physical Chemistry Chemical Physics, 2015, 17, 1800-1810.	1.3	25
86	Effect of the anion and the cation of an electrolyte on the activity coefficient of dl-alanine in aqueous solutions. Fluid Phase Equilibria, 1998, 142, 193-204.	1.4	24
87	Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14]Cl. Water Science and Technology, 2017, 75, 128-140.	1.2	24
88	Good reporting practice for thermophysical and thermochemical property measurements (IUPAC) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 50
	Experimental VIE at 101.32 bDa in hinary systems composed of ethyl methanoate and alban 1 ols or		

89	Experimental VLE at 101.32 kPa in binary systems composed of ethyl methanoate and alkan-1-ols or alkan-2-ols and treatment of data using a correlation with temperature-dependent parameters. Fluid Phase Equilibria, 1998, 146, 351-370.	1.4	23
90	Molar Volume, Refractive Index, and Isentropic Compressibility at 298.15 K for 1-Butanol + Ethanol + 2-Methoxy-2-methylpropane. Journal of Chemical & Engineering Data, 1999, 44, 291-295.	1.0	23

Ανα δοτο

#	Article	IF	CITATIONS
91	Alkylpyridinium Alkylsulfate Ionic Liquids as Solvents for the Deterpenation of Citrus Essential Oil. Separation Science and Technology, 2012, 47, 292-299.	1.3	23
92	Influence of Methanol on the Dissolution of Lignocellulose Biopolymers with the Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. Industrial & Engineering Chemistry Research, 2015, 54, 9605-9614.	1.8	23
93	Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K. Thermochimica Acta, 2005, 435, 197-201.	1.2	22
94	Isobaric Vaporâ^'Liquid Equilibria at 101.32 kPa and Densities, Speeds of Sound, and Refractive Indices at 298.15 K for MTBE or DIPE or TAME + 1-Propanol Binary Systems. Journal of Chemical & Engineering Data, 2010, 55, 92-97.	1.0	22
95	Properties modification by eutectic formation in mixtures of ionic liquids. RSC Advances, 2015, 5, 22178-22187.	1.7	21
96	Insights on the laccase extraction and activity in ionic-liquid-based aqueous biphasic systems. Separation and Purification Technology, 2020, 248, 117052.	3.9	21
97	Density, Refractive Index, and Speed of Sound for 2-Ethoxy-2-Methylbutane + Ethanol + Water at 298.15 K. Journal of Chemical & Engineering Data, 2000, 45, 536-539.	1.0	20
98	Phase stability of the system limonene+linalool+2-aminoethanol. Fluid Phase Equilibria, 2004, 226, 121-127.	1.4	20
99	Isomer effect in the separation of octane and xylenes using the ionic liquid 1-ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide. Fluid Phase Equilibria, 2010, 294, 180-186.	1.4	20
100	Water/oil/[P6,6,6,14][NTf2] phase equilibria. Journal of Chemical Thermodynamics, 2014, 75, 63-68.	1.0	20
101	Aqueous two-phase systems with thermo-sensitive EOPO co-polymer (UCON) and sulfate salts: Effect of temperature and cation. Journal of Chemical Thermodynamics, 2017, 108, 136-142.	1.0	20
102	Separation of Linalool from Limonene via Extractive Distillation with 1-Butyl-3-methylimidazolium Acetate as Entrainer. Industrial & Engineering Chemistry Research, 2020, 59, 19449-19457.	1.8	20
103	Recovery of lactose and proteins from cheese whey with poly(ethylene)glycol/sulfate aqueous two-phase systems. Separation and Purification Technology, 2021, 255, 117686.	3.9	20
104	Title is missing!. Journal of Solution Chemistry, 1998, 27, 911-923.	0.6	19
105	Tributyl(tetradecyl)phosphonium Chloride Ionic Liquid for Surfactant-Enhanced Oil Recovery. Energy & Fuels, 2017, 31, 6758-6765.	2.5	19
106	Isobaric Vapor-Liquid Equilibria of Methanol + Hexyl Acetate and Ethanol + Hexyl Acetate. Journal of Chemical & Engineering Data, 1995, 40, 515-518.	1.0	18
107	Isobaric Vapor-Liquid Equilibria of Methanol + 1-Octanol and Ethanol + 1-Octanol Mixtures. Journal of Chemical & Engineering Data, 1995, 40, 1011-1014.	1.0	18
108	Liquid–liquid–liquid equilibria for water+[P66614][DCA]+dodecane ternary system. Fluid Phase Equilibria, 2015, 405, 124-131.	1.4	18

Ανα Soto

#	Article	IF	CITATIONS
109	Oil recovery tests with ionic liquids: A review and evaluation of 1-decyl-3-methylimidazolium triflate. Petroleum Science, 2022, 19, 1877-1887.	2.4	17
110	Preparation of metal oxide nanoparticles in ionic liquid medium. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	16
111	Water + ethanol + 2-methoxy-2-methylbutane: Properties of mixing at 298.15 K and isobaric vapour-liquid equilibria at 101.32 kPa. Fluid Phase Equilibria, 1997, 141, 207-220.	1.4	15
112	Quaternary liquid–liquid equilibria of systems with two partially miscible solvent pairs: 1-octanol+2-methoxy-2-methylpropane+water+ethanol at 25°C. Fluid Phase Equilibria, 1998, 146, 161-173.	1.4	15
113	(Liquid + liquid) equilibria of (tert -amyl ethyl ether+ ethanol + water) at several temperatures. Journal of Chemical Thermodynamics, 2001, 33, 139-146.	1.0	15
114	Deterpenation of citrus essential oil with 1-ethyl-3-methylimidazolium acetate: A comparison of unit operations. Separation and Purification Technology, 2020, 250, 117208.	3.9	15
115	Design and performance analysis of a formulation based on SDBS and ionic liquid for EOR in carbonate reservoirs. Journal of Petroleum Science and Engineering, 2022, 209, 109856.	2.1	15
116	Excess volumes and refractions and liquid-liquid equilibria of the ternary system water + ethanol + hexyl acetate. Fluid Phase Equilibria, 1993, 87, 347-364.	1.4	14
117	Liquidâ^'Liquid Equilibria of 1-Octanol + 2-Methoxy-2-methylpropane + Water + Methanol at 25 °C. Journal of Chemical & Engineering Data, 1998, 43, 255-258.	1.0	14
118	Determination and correlation of liquid–liquid equilibrium data for the quaternary system 1-octanol+2-methoxy-2-methylbutane+water+methanol at 25°C. Fluid Phase Equilibria, 1999, 158-160, 949-960.	1.4	14
119	Liquid-liquid interfacial tension of equilibrated mixtures of ionic liquids and hydrocarbons. Science China Chemistry, 2012, 55, 1519-1524.	4.2	14
120	Direct Preparation of Sulfide Semiconductor Nanoparticles from the Corresponding Bulk Powders in an Ionic Liquid. Angewandte Chemie - International Edition, 2012, 51, 1424-1427.	7.2	14
121	Measurement and prediction of isobaric vapour–liquid equilibrium data of the system ethanol+methanol+2-methoxy-2-methylpropane. Fluid Phase Equilibria, 1998, 146, 139-153.	1.4	13
122	Extractive distillation of 2â€methoxyâ€2â€methylpropane + ethanol using 1â€butanol as entrainer: Equilibria and simulation. Canadian Journal of Chemical Engineering, 1999, 77, 1135-1140.	0.9	13
123	Physical Properties of the Ternary System 1-Butanol + Methanol + 2-Methoxy-2-methylpropane at 298.15 K:  Measurement and Prediction. Journal of Chemical & Engineering Data, 1999, 44, 1028-1033.	1.0	13
124	Synthesis of AgCl nanoparticles in ionic liquid and their application in photodegradation of Orange II. Journal of Materials Science, 2015, 50, 3576-3585.	1.7	13
125	Thermal behaviour of mixtures of 1-alkylpyridinium halides with and without a common ion. Journal of Molecular Liquids, 2018, 268, 781-790.	2.3	13
126	Ionic Liquids Derived from Proline: Application as Surfactants. ChemPhysChem, 2018, 19, 2885-2893.	1.0	13

Ανα δοτο

#	Article	IF	CITATIONS
127	Densities, refractive indexes, and excess molar volumes of water + methanol + hexyl acetate and its binary sub-mixtures at 298.15 K. Journal of Chemical & Engineering Data, 1994, 39, 95-97.	1.0	12
128	Densities, Refractive Indices, and Excess Molar Volumes of Water + Methanol + 2-Methoxy-2-methylpropane at 298.15 K. Journal of Chemical & Engineering Data, 1995, 40, 647-649.	1.0	12
129	Vaporâ^'Liquid Equilibria at 101.32 kPa of the Ternary Systems 2-Methoxy-2-methylpropane + Methanol + Water and 2-Methoxy-2-methylpropane + Ethanol + Water. Journal of Chemical & Engineering Data, 1998, 43, 708-713.	1.0	12
130	Thermodynamic behaviour of ethanol+methanol+2-ethoxy-2-methylpropane system. Physical properties and phase equilibria. Fluid Phase Equilibria, 1999, 165, 121-139.	1.4	12
131	Synthesis and characterization of highly concentrated Agl–[P6,6,6,14]Cl ionanofluids. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	12
132	Potential impact on the recruitment of chemical engineering graduates due to the industrial internship. Education for Chemical Engineers, 2019, 26, 107-113.	2.8	12
133	Title is missing!. Journal of Solution Chemistry, 1998, 27, 601-619.	0.6	11
134	Recovery of the ionic liquids [C2mim][OAc] or [C2mim][SCN] by distillation from their binary mixtures with methanol or ethanol. Separation and Purification Technology, 2020, 248, 117103.	3.9	11
135	Tetrabutylphosphonium acetate and its eutectic mixtures with common-cation halides as solvents for carbon dioxide capture. Chemical Engineering Journal, 2021, 409, 128191.	6.6	11
136	Densities, Refractive Indices, and Excess Molar Volumes of Water + Ethanol + 2-Methoxy-2-methylpropane at 298.15 K. Journal of Chemical & Engineering Data, 1995, 40, 1285-1287.	1.0	10
137	Mixing properties of tris(2-hydroxyethyl)methylamonium methylsulfate, water, and methanol at 298.15K. Data treatment using several correlation equations. Journal of Chemical Thermodynamics, 2009, 41, 235-242.	1.0	10
138	Phase equilibrium for polymer/ionic liquid aqueous two-phase systems. Fluid Phase Equilibria, 2020, 506, 112387.	1.4	10
139	Enhanced oil recovery with nanofluids based on aluminum oxide and 1-dodecyl-3-methylimidazolium chloride ionic liquid. Journal of Molecular Liquids, 2022, 363, 119798.	2.3	10
140	Extraction equilibria of the type 2: ternary liquid mixture {x1tert-butyl methyl ether +x2water + (1) Tj ETQq0 0 0	rgBT/Ove	erlogk 10 Tf 50
141	Phase equilibria of water + methanol + hexyl acetate mixtures. Fluid Phase Equilibria, 1997, 128, 261-270.	1.4	9
142	Phase equilibria involved in extractive distillation of 2-methoxy-2-methylpropane+methanol using 1-butanol as entrainer. Fluid Phase Equilibria, 2000, 171, 207-218.	1.4	9
143	Isobaric vapor–liquid equilibria of 1,1-dimethylethoxy-butane+methanol or ethanol+water at 101.32kPa. Fluid Phase Equilibria, 2007, 259, 57-65.	1.4	9
144	Polyethylene glycol (1500 or 600) – potassium tartrate aqueous two-phase systems. Fluid Phase Equilibria, 2018, 470, 120-125.	1.4	9

Ανα Soto

#	Article	IF	CITATIONS
145	Liquidâ^'Liquid Equilibrium fortert-Amyl Ethyl Ether + Methanol + Water. Journal of Chemical & Engineering Data, 2001, 46, 557-561.	1.0	8
146	Thermophysical properties for 1-butanol+ethanol+2-methoxy-2-methylbutane ternary system. Fluid Phase Equilibria, 2001, 187-188, 155-169.	1.4	8
147	(Liquid+liquid) equilibrium of (dibutyl ether+methanol+water) at different temperatures. Journal of Chemical Thermodynamics, 2005, 37, 1007-1012.	1.0	8
148	Isobaric vapor–liquid equilibria for systems composed by 2-ethoxy-2-methylbutane, methanol or ethanol and water at 101.32kPa. Fluid Phase Equilibria, 2005, 233, 9-18.	1.4	8
149	Correlation of three-liquid-phase equilibria involving ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 21610-21617.	1.3	8
150	Property Changes of Mixing for the 1-Butanol + Methanol + 2-Methoxy-2-methylbutane System at 298.15 K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2001, 46, 962-966.	1.0	7
151	Physical Properties and Their Changes on Mixing at 298.15 K and Atmospheric Pressure for the 2-Ethoxy-2-methylbutane + Methanol + Water System. Journal of Chemical & Engineering Data, 2001, 46, 1261-1265.	1.0	6
152	Thermoâ€Rheology of a Prolineâ€Based Surfaceâ€Active Ionic Liquid: Mixtures with Water and n â€Octane. Chemical Engineering and Technology, 2019, 42, 1952-1959.	0.9	6
153	Experimental Determination of the Vaporâ^'Liquid Equilibrium at 101.32 kPa of the Ternary System 1-Butanol + Methanol + TAME. Journal of Chemical & Engineering Data, 2000, 45, 1112-1115.	1.0	5
154	Data quality and assessment, validation methods and error propagation through the simulation software: Report from the Round-Table Discussion at the 10th World Congress of Chemical Engineering in Barcelona (October 1–5, 2017). Chemical Engineering Research and Design, 2018, 137, A1-A8.	2.7	5
155	Aqueous Two-Phase Systems: A Correlation Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 6318-6328.	1.8	5
156	Phase equilibria of 1-hexyl-3-methylimidazolium acetate with water and oil. Fluid Phase Equilibria, 2019, 483, 144-152.	1.4	4
157	AcetoneÂ+Â1-ethyl-3-methylimidazolium acetate phase diagram: A correlation challenge. Fluid Phase Equilibria, 2022, 557, 113419.	1.4	4
158	Isobaric Vapor-Liquid Equilibria of Water + Ethanol + Hexyl Acetate. Journal of Chemical & Engineering Data, 1995, 40, 1094-1096.	1.0	3
159	Vapour-liquid equilibrium data for the recovery of 1-octanol from ternary mixtures with methanol and water. Fluid Phase Equilibria, 1997, 129, 187-195.	1.4	3
160	Ionic Liquids for Extraction Processes in Refinery-Related Applications. Green Chemistry and Sustainable Technology, 2016, , 39-65.	0.4	3
161	Recovery of dialkylimidazolium-based ionic liquids from their mixtures with acetone or water by flash distillation. Journal of Molecular Liquids, 2022, 346, 118292.	2.3	3
162	Design and Characterization of Naphthalene Ionic Liquids. Frontiers in Chemistry, 2020, 8, 208.	1.8	2

Ανα δοτο

#	Article	IF	CITATIONS
163	Nanomaterial Synthesis in Ionic Liquids and Their Use on the Photocatalytic Degradation of Emerging Pollutants. Nanomaterials, 2021, 11, 411.	1.9	2
164	AOT + Polyethylene Glycol Eutectics for Enhanced Oil Recovery. Applied Sciences (Switzerland), 2021, 11, 8164.	1.3	2
165	Isobaric (vapour+liquid) equilibrium of (ethanol+methanol+2-methoxy-2-methylbutane). Journal of Chemical Thermodynamics, 1998, 30, 1363-1372.	1.0	1
166	Solubility Issues in Environmental Pollution. , 2007, , 411-427.		1
167	Highly viscous fluid displaced by a chemically controlled reactive interface. Chaos, 2021, 31, 023135.	1.0	1
168	Vaporâ^'Liquid Equilibria of 2-Methoxy-2-methylbutane + Methanol + Water at 101.32 kPa. Journal of Chemical & Engineering Data, 1997, 42, 434-437.	1.0	0
169	3. Solubilities of Amino Acids in Aqueous Electrolyte Solutions. , 2018, , 86-113.		0
170	4 .Activity Coefficients of Amino Acids in Aqueous Electrolyte Solutions. , 2018, , 114-133.		0
171	Equilibria and correlation of systems involving 1-hexyl-3-methylpyridinium trifluoromethanesulfonate. RSC Advances, 2019, 9, 42524-42532.	1.7	0
172	Preparation and Characterization of Absorbent Thin Films by Spray Pyrolysis Technique Ultrasonic. , 2019, , .		0
173	Liquid Systems Based on Tetra(<i>n</i> -butyl)phosphonium Acetate for the Non-dissolving Pretreatment of a Microcrystalline Cellulose (Avicel PH-101). Biomacromolecules, 2022, 23, 1970-1980.	2.6	0

11