List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2237727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends in Biotechnology, 2015, 33, 637-652.	4.9	599
2	Developments in metallic biodegradable stentsâ~†. Acta Biomaterialia, 2010, 6, 1693-1697.	4.1	509
3	Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. International Journal of Molecular Sciences, 2011, 12, 4250-4270.	1.8	487
4	Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nature Protocols, 2006, 1, 2753-2758.	5.5	446
5	Functional Human Corneal Equivalents Constructed from Cell Lines. Science, 1999, 286, 2169-2172.	6.0	432
6	Shape Memory Materials for Biomedical Applications. Advanced Engineering Materials, 2002, 4, 91-104.	1.6	392
7	Small-diameter vascular tissue engineering. Nature Reviews Cardiology, 2013, 10, 410-421.	6.1	386
8	Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 716-721.	3.3	337
9	Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 581-602.	1.5	316
10	Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 2008, 29, 944-953.	5.7	311
11	The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 2010, 31, 824-831.	5.7	304
12	Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studiesâ~†. Acta Biomaterialia, 2010, 6, 1852-1860.	4.1	291
13	Current status and outlook on the clinical translation of biodegradable metals. Materials Today, 2019, 23, 57-71.	8.3	271
14	Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy, 2008, 51, 38-45.	0.9	233
15	Collagen-based wound dressing: Effects of hyaluronic acid and firponectin on wound healing. Biomaterials, 1986, 7, 3-8.	5.7	231
16	Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomaterialia, 2008, 4, 284-295.	4.1	221
17	Angiogenesis in Calcium Phosphate Scaffolds by Inorganic Copper Ion Release. Tissue Engineering - Part A, 2009, 15, 1601-1609.	1.6	204
18	Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn Ag alloys for degradable implant applications. Materials Science and Engineering C, 2017, 77, 1170-1181.	3.8	197

#	Article	IF	CITATIONS
19	Collagen Fiber Formation in Repair Tissue: Development of Strength and Toughness. Collagen and Related Research, 1985, 5, 481-492.	2.2	192
20	Collagen-based wound dressings: Control of the pore structure and morphology. Journal of Biomedical Materials Research Part B, 1986, 20, 1219-1228.	3.0	181
21	Shape memory alloys: Properties and biomedical applications. Jom, 2000, 52, 36-44.	0.9	180
22	Tailoring Mechanical Properties of Collagen-Based Scaffolds for Vascular Tissue Engineering: The Effects of pH, Temperature and Ionic Strength on Gelation. Polymers, 2010, 2, 664-680.	2.0	169
23	Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials, 2005, 26, 7410-7417.	5.7	168
24	Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studiesa 7. Acta Biomaterialia, 2010, 6, 1843-1851.	4.1	160
25	Mutant huntingtin is present in neuronal grafts in huntington disease patients. Annals of Neurology, 2014, 76, 31-42.	2.8	158
26	Bioreactors for Tissue Engineering: Focus on Mechanical Constraints. A Comparative Review. Tissue Engineering, 2006, 12, 2367-2383.	4.9	153
27	Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1-11.	2.1	151
28	Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomaterialia, 2010, 6, 4019-4026.	4.1	147
29	Electroformed iron as new biomaterial for degradable stents: Development process and structure–properties relationshipâ~†. Acta Biomaterialia, 2010, 6, 1726-1735.	4.1	141
30	Chemical stability of polyether urethanes versus polycarbonate urethanes. , 1997, 36, 550-559.		139
31	Direct Printing of Bioceramic Implants with Spatially Localized Angiogenic Factors. Advanced Materials, 2007, 19, 795-800.	11.1	132
32	Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulationâ~†. Acta Biomaterialia, 2010, 6, 1800-1807.	4.1	130
33	Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Frontiers in Bioengineering and Biotechnology, 2019, 7, 166.	2.0	119
34	Effects of fibroblasts and basic fibroblast growth factor on facilitation of dermal wound healing by type I collagen matrices. Journal of Biomedical Materials Research Part B, 1991, 25, 683-696.	3.0	117
35	Ammonia RFâ^'Plasma on PTFE Surfaces: Chemical Characterization of the Species Created on the Surface by Vaporâ''Phase Chemical Derivatization. Journal of Physical Chemistry B, 2001, 105, 12490-12497.	1.2	117
36	Macromolecular Biomaterials for Scaffold-Based Vascular Tissue Engineering. Macromolecular Bioscience, 2007, 7, 701-718.	2.1	108

#	Article	IF	CITATIONS
37	Fibroblast growth on a porous collagen sponge containing hyaluronic acid and fibronectin. Biomaterials, 1987, 8, 195-200.	5.7	107
38	A genome-wide shRNA screen identifies <i>GAS1</i> as a novel melanoma metastasis suppressor gene. Genes and Development, 2008, 22, 2932-2940.	2.7	105
39	A Collagen-Based Scaffold for a Tissue Engineered Human Cornea: Physical and Physiological Properties. International Journal of Artificial Organs, 2003, 26, 764-773.	0.7	104
40	Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar!. Pharmaceutics, 2020, 12, 183.	2.0	104
41	Artificial Human Corneas. Cornea, 2002, 21, S54-S61.	0.9	102
42	Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications. Journal of Materials Science: Materials in Medicine, 2006, 17, 647-657.	1.7	96
43	Brushite–collagen composites for bone regeneration. Acta Biomaterialia, 2008, 4, 1315-1321.	4.1	94
44	The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Materials Today Bio, 2021, 10, 100106.	2.6	91
45	A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications. Journal Physics D: Applied Physics, 2006, 39, 3461-3469.	1.3	90
46	Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment?. Journal of Tissue Engineering, 2017, 8, 204173141771207.	2.3	90
47	Improving arterial prosthesis neo-endothelialization: Application of a proactive VEGF construct onto PTFE surfaces. Biomaterials, 2005, 26, 7402-7409.	5.7	89
48	Size matters for in vitro gene delivery: investigating the relationships among complexation protocol, transfection medium, size and sedimentation. Scientific Reports, 2017, 7, 44134.	1.6	88
49	Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 524-531.	1.3	85
50	Reduced graphene oxide growth on 316L stainless steel for medical applications. Nanoscale, 2014, 6, 8664-8670.	2.8	76
51	Heparin-fibroblast growth factorfibrin complex: in vitro and in vivo applications to collagen-based materials. Biomaterials, 1994, 15, 665-672.	5.7	75
52	Characterization of film failures by bismuth electrodeposition—Application to thin deformed fluorocarbon films for stent applications. Electrochimica Acta, 2010, 55, 1042-1050.	2.6	74
53	Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface. Materials Science and Engineering C, 2013, 33, 4715-4724.	3.8	73
54	Biodegradable Magnesium Alloys Promote Angioâ€Osteogenesis to Enhance Bone Repair. Advanced Science, 2020, 7, 2000800.	5.6	72

#	Article	IF	CITATIONS
55	Collagen Biomineralization In Vivo by Sustained Release of Inorganic Phosphate Ions. Advanced Materials, 2010, 22, 1858-1862.	11.1	70
56	Preparation of Ready-to-use, Stockable and Reconstituted Collagen. Macromolecular Bioscience, 2005, 5, 821-828.	2.1	69
57	Collagenâ€Reinforced Electrospun Silk Fibroin Tubular Construct as Small Calibre Vascular Graft. Macromolecular Bioscience, 2012, 12, 1566-1574.	2.1	65
58	Process of prototyping coronary stents from biodegradable Fe–Mn alloys. Acta Biomaterialia, 2013, 9, 8585-8592.	4.1	65
59	Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. International Journal of Biological Macromolecules, 2020, 143, 619-632.	3.6	61
60	Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomaterialia, 2013, 9, 8730-8739.	4.1	60
61	Design of a Perfusion Bioreactor Specific to the Regeneration of Vascular Tissues Under Mechanical Stresses. Artificial Organs, 2005, 29, 906-912.	1.0	59
62	Evidence of antibacterial activity on titanium surfaces through nanotextures. Applied Surface Science, 2014, 308, 275-284.	3.1	59
63	Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice. Drug Delivery and Translational Research, 2015, 5, 187-197.	3.0	58
64	Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants. Acta Biomaterialia, 2015, 17, 68-77.	4.1	57
65	Comparison of Atmospheric-Pressure Plasma versus Low-Pressure RF Plasma for Surface Functionalization of PTFE for Biomedical Applications. Plasma Processes and Polymers, 2006, 3, 506-515.	1.6	56
66	Development of Degradable Fe-35Mn Alloy for Biomedical Application. Advanced Materials Research, 2007, 15-17, 107-112.	0.3	56
67	The influence of UV irradiation on surface composition of collagen/PVP blended films. Applied Surface Science, 2006, 253, 1970-1977.	3.1	55
68	Long-term stability of hydrogenated DLC coatings: Effects of aging on the structural, chemical and mechanical properties. Diamond and Related Materials, 2014, 48, 65-72.	1.8	54
69	Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application. Biomatter, 2016, 6, e959874.	2.6	53
70	Behaviour of fibroblasts and epidermal cells cultivated on analogues of extracellular matrix. Biomaterials, 1988, 9, 91-96.	5.7	52
71	Immobilized liposome layers for drug delivery applications: inhibition of angiogenesis. Journal of Controlled Release, 2002, 80, 179-195.	4.8	52
72	Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1812-1822.	1.7	52

#	Article	IF	CITATIONS
73	Preparation and Characterization of a Scaffold for Vascular Tissue Engineering by Direct-Assembling of Collagen and Cells in a Cylindrical Geometry. Macromolecular Bioscience, 2007, 7, 719-726.	2.1	51
74	In vitro Biological Performances of Phosphorylcholine-Grafted ePTFE Prostheses through RFGD Plasma Techniques. Macromolecular Bioscience, 2005, 5, 829-839.	2.1	50
75	In vitro degradation behavior of Fe–20Mn–1.2C alloy in three different pseudo-physiological solutions. Materials Science and Engineering C, 2016, 61, 564-573.	3.8	50
76	Blood protein adsorption on sulfonated chitosan and κ-carrageenan films. Colloids and Surfaces B: Biointerfaces, 2013, 111, 719-725.	2.5	49
77	Turbidimetric and morphological studies of type I collagen fibre self assembly in vitro and the influence of fibronectin. International Journal of Biological Macromolecules, 1985, 7, 135-140.	3.6	47
78	Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds. Biomaterials, 2018, 180, 130-142.	5.7	47
79	Osteoblast-derived survival factors protect PC-3 human prostate cancer cells from adriamycin apoptosis. Urology, 1998, 52, 341-347.	0.5	46
80	Denatured collagen as support for a FGF-2 delivery system: physicochemical characterizations and in vitro release kinetics and bioactivity. Biomaterials, 2004, 25, 3761-3772.	5.7	46
81	On the Effects of UV and pH on the Mechanical Behavior, Molecular Conformation and Cell Viability of Collagenâ€Based Scaffold for Vascular Tissue Engineering. Macromolecular Bioscience, 2010, 10, 307-316.	2.1	45
82	Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement. Biomatter, 2013, 3, .	2.6	45
83	Oxidized bacterial cellulose membrane as support for enzyme immobilization: properties and morphological features. Cellulose, 2020, 27, 3055-3083.	2.4	45
84	Unraveling the role of mechanical stimulation on smooth muscle cells: A comparative study between 2D and 3D models. Biotechnology and Bioengineering, 2016, 113, 2254-2263.	1.7	44
85	Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Applied Surface Science, 2018, 445, 478-487.	3.1	44
86	Extracellular matrix analogs as carriers for growth factors:In vitro fibroblast behavior. Journal of Biomedical Materials Research Part B, 1993, 27, 389-397.	3.0	42
87	Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. Materials Science and Engineering C, 2017, 72, 682-691.	3.8	42
88	Antibacterial Coatings Based on Chitosan for Pharmaceutical and Biomedical Applications. Current Pharmaceutical Design, 2018, 24, 866-885.	0.9	42
89	Investigation of Corrosion Behaviour of Magnesium Alloy AM60B-F under Pseudo-Physiological Conditions. Materials Science Forum, 2003, 426-432, 521-526.	0.3	41
90	Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling. Biomaterials, 2015, 54, 126-135.	5.7	41

#	Article	IF	CITATIONS
91	Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles. Scientific Reports, 2016, 6, 26293.	1.6	41
92	Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues. Materials Science and Engineering C, 2019, 94, 364-375.	3.8	41
93	Silver-based antibacterial strategies for healthcare-associated infections: Processes, challenges, and regulations. An integrated review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102142.	1.7	41
94	Biological molecule-impregnated polyester: an in vivo angiogenesis study. Biomaterials, 1996, 17, 1659-1665.	5.7	40
95	Collagen-Poly(N-Isopropylacrylamide)???Based Membranes for Corneal Stroma Scaffolds. Cornea, 2003, 22, S81-S88.	0.9	39
96	Degradation Behaviour of Metallic Biomaterials for Degradable Stents. Advanced Materials Research, 2007, 15-17, 113-118.	0.3	39
97	Controlled Distribution and Clustering of Silver in Ag-DLC Nanocomposite Coatings Using a Hybrid Plasma Approach. ACS Applied Materials & Interfaces, 2016, 8, 21020-21027.	4.0	39
98	Surface modifications of 316 stainless steel for the improvement of its interface properties with RFGD-deposited fluorocarbon coating. Surface and Coatings Technology, 2005, 197, 278-287.	2.2	38
99	In Vitro Bioactivity Assessment of Metallic Magnesium. Key Engineering Materials, 2006, 309-311, 453-456.	0.4	38
100	Biodegradable Metal Stents: A Focused Review on Materials and Clinical Studies. Journal of Biomaterials and Tissue Engineering, 2014, 4, 868-874.	0.0	38
101	Chemical and Morphological Characterization of Ultra-Thin Fluorocarbon Plasma-Polymer Deposition on 316 Stainless Steel Substrates: A First Step Toward the Improvement of the Long-Term Safety of Coated-Stents. Plasma Processes and Polymers, 2005, 2, 424-440.	1.6	37
102	Three-dimensional type I collagen gel system for the study of osteoblastic metastases produced by metastatic prostate cancer. Journal of Bone and Mineral Research, 1994, 9, 1823-1832.	3.1	37
103	Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells. Biomedical Materials (Bristol), 2011, 6, 055011.	1.7	37
104	A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1489-e1500.	1.3	37
105	Porosity and biological properties of polyethylene glycol-conjugated collagen materials. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 715-728.	1.9	36
106	Protein tyrosine phosphatase inhibition induces anti-tumor activity: Evidence of Cdk2/p27kip1 and Cdk2/SHP-1 complex formation in human ovarian cancer cells. Cancer Letters, 2008, 262, 265-275.	3.2	36
107	Development and characterization of silver containing calcium phosphate coatings on pure iron foam intended for bone scaffold applications. Materials and Design, 2018, 148, 124-134.	3.3	36
108	Wettability of cross-linked collagenous biomaterials: In vitro study. Biomaterials, 1992, 13, 612-616.	5.7	34

#	Article	IF	CITATIONS
109	Bioactive Polymer Fibers to Direct Endothelial Cell Growth in a Three-Dimensional Environment. Biomacromolecules, 2007, 8, 864-873.	2.6	34
110	On the long term antibacterial features of silver-doped diamondlike carbon coatings deposited via a hybrid plasma process. Biointerphases, 2014, 9, 029013.	0.6	34
111	Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study. Carbohydrate Polymers, 2016, 147, 28-36.	5.1	34
112	Coronary stent CD31-mimetic coating favours endothelialization and reduces local inflammation and neointimal development <i>in vivo</i> . European Heart Journal, 2021, 42, 1760-1769.	1.0	34
113	Chemotherapy Cytotoxicity of Human MCF-7 and MDA-MB 231 Breast Cancer Cells Is Altered by Osteoblast-Derived Growth Factors. Molecular Medicine, 1999, 5, 86-97.	1.9	33
114	RCAS1 is associated with ductal breast cancer progression. Biochemical and Biophysical Research Communications, 2002, 293, 1544-1549.	1.0	33
115	Study of the adhesion of thin plasma fluorocarbon coatings resisting plastic deformation for stent applications. Journal Physics D: Applied Physics, 2008, 41, 045310.	1.3	32
116	Comparative evaluation and optimization of off-the-shelf cationic polymers for gene delivery purposes. Polymer Chemistry, 2015, 6, 6325-6339.	1.9	32
117	The use of multiple pseudo-physiological solutions to simulate the degradation behavior of pure iron as a metallic resorbable implant: a surface-characterization study. Physical Chemistry Chemical Physics, 2016, 18, 19637-19646.	1.3	32
118	Comparative study on complexes formed by chitosan and different polyanions: Potential of chitosan-pectin biomaterials as scaffolds in tissue engineering. International Journal of Biological Macromolecules, 2019, 132, 178-189.	3.6	32
119	Study on the stability of plasma-polymerized fluorocarbon ultra-thin coatings on stainless steel in water. Surface and Coatings Technology, 2008, 202, 4884-4891.	2.2	31
120	X-ray Photoelectron Emission Microscopy and Time-of-Flight Secondary Ion Mass Spectrometry Analysis of Ultrathin Fluoropolymer Coatings for Stent Applications. Langmuir, 2008, 24, 7897-7905.	1.6	30
121	Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering. Journal of Artificial Organs, 2012, 15, 250-265.	0.4	30
122	Treatment of 4-chlorobenzoic acid by plasma-based advanced oxidation processes. Chemical Engineering and Processing: Process Intensification, 2013, 72, 82-89.	1.8	30
123	Irradiated mesenchymal stem cells improve the ex vivo expansion of hematopoietic progenitors by partly mimicking the bone marrow endosteal environment. Journal of Immunological Methods, 2011, 370, 93-103.	0.6	29
124	Wound healing using a collagen matrix: Effect ofDC electrical stimulation. Journal of Biomedical Materials Research Part B, 1988, 22, 191-206.	3.0	28
125	Methods to Investigate the Adhesion of Soft Nanoâ€Coatings on Metal Substrates – Application to Polymerâ€Coated Stents. Macromolecular Materials and Engineering, 2009, 294, 11-19.	1.7	28
126	Plasma polymerized allylamine films deposited on 316L stainless steel for cardiovascular stent coatings. Surface and Coatings Technology, 2010, 205, 2461-2468.	2.2	28

#	Article	IF	CITATIONS
127	Human Elastinâ€Based Recombinant Biopolymers Improve Mesenchymal Stem Cell Differentiation. Macromolecular Bioscience, 2012, 12, 1546-1554.	2.1	28
128	Intestinal and Multivisceral Transplantation Immunosuppression Protocols—Literature Review. Transplantation Proceedings, 2012, 44, 2445-2448.	0.3	28
129	Effect of Poly-L-Lysine coating on titanium osseointegration: from characterization to in vivo studies. Journal of Oral Implantology, 2015, 41, 626-631.	0.4	28
130	In vitro evaluation of anti-calcification and anti-coagulation on sulfonated chitosan and carrageenan surfaces. Materials Science and Engineering C, 2016, 59, 241-248.	3.8	27
131	Single nanoparticles magnetization curves by controlled tip magnetization magnetic force microscopy. Nanoscale, 2017, 9, 18000-18011.	2.8	27
132	Effects of a Pseudophysiological Environment on the Elastic and Viscoelastic Properties of Collagen Gels. International Journal of Biomaterials, 2012, 2012, 1-9.	1.1	26
133	On the potential for fibronectin/phosphorylcholine coatings on PTFE substrates to jointly modulate endothelial cell adhesion and hemocompatibility properties. Biomatter, 2015, 5, e979679.	2.6	26
134	CO2-rich atmosphere strongly affects the degradation of Fe-21Mn-1C for biodegradable metallic implants. Materials Letters, 2016, 181, 362-366.	1.3	26
135	Prolonged delivery of BMP-2 by a non-polymer hydrogel for bone defect regeneration. Drug Delivery and Translational Research, 2018, 8, 178-190.	3.0	26
136	In vitro angiogenesis in fibrin matrices containing fibronectin or hyaluronic acid. Cell Biology International Reports, 1992, 16, 1251-1263.	0.7	25
137	Poly(Ethylene Glycol)-Serum Albumin Hydrogel as Matrix for Enzyme Immobilization: Biomedical Applications. Artificial Cells, Blood Substitutes, and Biotechnology, 1995, 23, 587-595.	0.9	25
138	Mechanical and Biological Performances of New Scaffolds Made of Collagen Hydrogels and Fibroin Microfibers for Vascular Tissue Engineering. Macromolecular Bioscience, 2012, 12, 1253-1264.	2.1	25
139	Synergistic control of sex hormones by 17β-HSD type 7: a novel target for estrogen-dependent breast cancer. Journal of Molecular Cell Biology, 2015, 7, 568-579.	1.5	25
140	Prediction of circumferential compliance and burst strength of polymeric vascular grafts. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 332-340.	1.5	25
141	In vivo evaluation of hydrophobic and fibrillar microporous polyetherurethane urea graft. Biomaterials, 1989, 10, 521-531.	5.7	24
142	In vitro contraction rate of collagen in sponge-shape matrices. Journal of Biomaterials Science, Polymer Edition, 1992, 3, 301-313.	1.9	24
143	Chemical inactivators as sterilization agents for bovine collagen materials. , 1997, 37, 212-221.		24
144	Biomimetic coating of crossâ€linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 2405-2415.	2.1	24

9

#	Article	IF	CITATIONS
145	Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications. Materials Science and Engineering C, 2017, 81, 511-521.	3.8	24
146	Vascugraft® microporous polyesterurethane arterial prosthesis as a thoraco-abdominal bypass in dogs. Biomaterials, 1996, 17, 1289-1300.	5.7	24
147	Promotion of Angiogenesis in Tissue Engineering: Developing Multicellular Matrices with Multiple Capacities. International Journal of Artificial Organs, 2006, 29, 1148-1157.	0.7	23
148	Fetal development, mechanobiology and optimal control processes can improve vascular tissue regeneration in bioreactors: An integrative review. Medical Engineering and Physics, 2012, 34, 269-278.	0.8	23
149	In vitro exposure of a novel polyesterurethane graft to enzymes: a study of the biostability of the Vascugraft® arterial prosthesis. Biomaterials, 1994, 15, 1129-1144.	5.7	22
150	Endothelial cells exposed to erythrocytes under shear stress: An in vitro study. Biomaterials, 1998, 19, 1925-1934.	5.7	22
151	Toward High-Performance Coatings for Biomedical Devices: Study on Plasma-Deposited Fluorocarbon Films and Ageing in PBS. Materials, 2010, 3, 1515-1532.	1.3	22
152	Influence of the 316 L Stainless Steel Interface on the Stability and Barrier Properties of Plasma Fluorocarbon Films. ACS Applied Materials & amp; Interfaces, 2011, 3, 2323-2331.	4.0	22
153	Ammonia RF-Plasma Treatment of Tubular ePTFE Vascular Prostheses. Plasmas and Polymers, 1999, 4, 207-228.	1.5	21
154	On the Growth of Fluorocarbon Thin Films Deposited on Plasmaâ€Etched 316L Stainless Steel. Plasma Processes and Polymers, 2010, 7, 309-317.	1.6	21
155	siRNA-Mediated Down-Regulation of P-glycoprotein in a Xenograft Tumor Model in NOD-SCID Mice. Pharmaceutical Research, 2011, 28, 2516-2529.	1.7	21
156	Insulin-like growth factor binding protein-2 and neurotrophin 3 synergize together to promote the expansion of hematopoietic cells ex vivo. Cytokine, 2012, 58, 327-331.	1.4	21
157	<scp>BSA</scp> and Fibrinogen Adsorption on Chitosan/κâ€ <scp>C</scp> arrageenan Polyelectrolyte Complexes. Macromolecular Bioscience, 2013, 13, 1072-1083.	2.1	21
158	Experimental issues in magnetic force microscopy of nanoparticles. AIP Conference Proceedings, 2015, , .	0.3	21
159	Degradation behavior of biodegradable Fe35Mn alloy stents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 572-577.	1.6	21
160	Laser surface structuring affects polymer deposition, coating homogeneity, and degradation rate of Mg alloys. Materials Letters, 2015, 160, 359-362.	1.3	21
161	Relationship Between Mechanical Properties and Collagen Structure of Closed and Open Wounds. Journal of Biomechanical Engineering, 1988, 110, 352-356.	0.6	20
162	A Costâ€Effective Culture System for the In Vitro Assembly, Maturation, and Stimulation of Advanced Multiculture Tubular Tissue Models. Biotechnology Journal, 2018, 13, 1700359.	1.8	20

#	Article	IF	CITATIONS
163	Real-Time Study of the Adsorption and Grafting Process of Biomolecules by Means of Bloch Surface Wave Biosensors. ACS Applied Materials & Interfaces, 2018, 10, 33611-33618.	4.0	20
164	Heparin-Modified Collagen Gels for Controlled Release of Pleiotrophin: Potential for Vascular Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 74.	2.0	20
165	Understanding the effect of the reinforcement addition on corrosion behavior of Fe/Mg2Si composites for biodegradable implant applications. Materials Chemistry and Physics, 2019, 223, 771-778.	2.0	20
166	Spontaneous and Biomimetic Apatite Formation on Pure Magnesium. Materials Science Forum, 2007, 539-543, 589-594.	0.3	19
167	Combined effect of Laponite and polymer molecular weight on the cell-interactive properties of synthetic PEO-based hydrogels. Reactive and Functional Polymers, 2019, 136, 95-106.	2.0	19
168	Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: A superior alternative to methacrylated gelatin?. Materials Science and Engineering C, 2021, 130, 112460.	3.8	19
169	Impregnated Polyester Arterial Prostheses: Performance and Prospects. Annals of Vascular Surgery, 1999, 13, 509-523.	0.4	18
170	Biocompatibility and Light Transmission of Liposomal Lenses. Optometry and Vision Science, 2007, 84, 954-961.	0.6	18
171	Effect of Sterilization on Nonâ€woven Polyethylene Terephthalate Fiber Structures for Vascular Grafts. Macromolecular Bioscience, 2011, 11, 13-21.	2.1	18
172	Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration. Journal of Visualized Experiments, 2015, , e52812.	0.2	18
173	A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models. Annals of Biomedical Engineering, 2017, 45, 1496-1510.	1.3	18
174	A planar model of the vessel wall from cellularized-collagen scaffolds: focus on cell–matrix interactions in mono-, bi- and tri-culture models. Biomaterials Science, 2017, 5, 153-162.	2.6	18
175	Laser surface texturing of SS316L for enhanced adhesion of HUVECs. Surface Engineering, 2020, 36, 1240-1249.	1.1	18
176	Bioactive collagen sponge as connective tissue substitute. Materials Science and Engineering C, 1994, 2, 43-49.	3.8	17
177	Medium conditioned with mesenchymal stromal cell–derived osteoblasts improves the expansion and engraftment properties of cord blood progenitors. Experimental Hematology, 2014, 42, 741-752.e1.	0.2	17
178	Long-term <i>in vitro</i> degradation behaviour of Fe and Fe/Mg ₂ Si composites for biodegradable implant applications. RSC Advances, 2018, 8, 9627-9639.	1.7	17
179	Incorporation of silver nanoparticles on Ti7.5Mo alloy surface containing TiO2 nanotubes arrays for promoting antibacterial coating – In vitro and in vivo study. Applied Surface Science, 2018, 455, 780-788.	3.1	17
180	Biological evaluation of a new family of aminosteroids that display a selective toxicity for various malignant cell lines. Anti-Cancer Drugs, 2012, 23, 803-814.	0.7	16

#	Article	IF	CITATIONS
181	On the Viscoelastic Properties of Collagenâ€Gelâ€Based Lattices under Cyclic Loading: Applications for Vascular Tissue Engineering. Macromolecular Materials and Engineering, 2012, 297, 724-734.	1.7	16
182	Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells. Biotechnology Journal, 2019, 14, 1700768.	1.8	16
183	Covalent Grafting of Chitosan on Plasma-Treated Polytetrafluoroethylene Surfaces for Biomedical Applications. Journal of Biomaterials and Tissue Engineering, 2014, 4, 915-924.	0.0	16
184	Biodegradable Mg-based alloys: biological implications and restorative opportunities. International Materials Reviews, 2023, 68, 365-403.	9.4	16
185	Sealing of Polyester Prostheses with Autologous Fibrin Glue and Bone Marrow. Annals of Vascular Surgery, 2000, 14, 543-552.	0.4	15
186	Facilitating tissue infiltration and angiogenesis in a tubular collagen scaffold. Journal of Biomedical Materials Research - Part A, 2010, 93A, 615-624.	2.1	15
187	How to Optimize Maturation in a Bioreactor for Vascular Tissue Engineering: Focus on a Decision Algorithm for Experimental Planning. Annals of Biomedical Engineering, 2010, 38, 2877-2884.	1.3	15
188	Dextran grafting on PTFE surface for cardiovascular applications. Biomatter, 2014, 4, F28805.	2.6	15
189	Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents. Acta Biomaterialia, 2013, 9, 8746-8753.	4.1	14
190	Crystal structure of superparamagnetic Mg0.2Ca0.8Fe2O4 nanoparticles synthesized by sol–gel method. Journal of Magnetism and Magnetic Materials, 2015, 374, 474-478.	1.0	14
191	A Novel Strategy to Coat Dopamine-Functionalized Titanium Surfaces With Agarose-Based Hydrogels for the Controlled Release of Gentamicin. Frontiers in Cellular and Infection Microbiology, 2021, 11, 678081.	1.8	14
192	Low-energy electrons and X-ray irradiation effects on plasma-polymerized allylamine bioactive coatings for stents. Polymer Degradation and Stability, 2010, 95, 153-163.	2.7	13
193	Viscoelastic properties of multi-layered cellularized vascular tissues fabricated from collagen gel. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 155-163.	1.5	13
194	Surface modification and direct plasma amination of L605 CoCr alloys: on the optimization of the oxide layer for application in cardiovascular implants. RSC Advances, 2019, 9, 2292-2301.	1.7	13
195	The addition of silver affects the deformation mechanism of a twinning-induced plasticity steel: Potential for thinner degradable stents. Acta Biomaterialia, 2019, 98, 103-113.	4.1	13
196	Effects of solar radiation on collagen-based biomaterials. International Journal of Photoenergy, 2006, 2006, 1-6.	1.4	12
197	Low doses of ultraviolet radiation stimulate cell activity in collagenâ€based scaffolds. Biotechnology Progress, 2008, 24, 884-889.	1.3	12
198	The biological response of poly(<scp>L</scp> â€lactide) films modified by different biomolecules: Role of the coating strategy. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2373-2381.	2.1	12

#	Article	IF	CITATIONS
199	Inhibition of 17beta-hydroxysteroid dehydrogenase type 7 modulates breast cancer protein profile and enhances apoptosis by down-regulating GRP78. Journal of Steroid Biochemistry and Molecular Biology, 2017, 172, 188-197.	1.2	12
200	Polysaccharide-based tissue-engineered vascular patches. Materials Science and Engineering C, 2019, 104, 109973.	3.8	12
201	Luminal Plasma Treatment for Small Diameter Polyvinyl Alcohol Tubular Scaffolds. Frontiers in Bioengineering and Biotechnology, 2019, 7, 117.	2.0	12
202	Elastin-like recombinamers in collagen-based tubular gels improve cell-mediated remodeling and viscoelastic properties. Biomaterials Science, 2020, 8, 3536-3548.	2.6	12
203	Deposition of fluorocarbon thin films on outer and inner surfaces of stainless steel mini-tubes by pulsed plasma polymerization for stents. Journal Physics D: Applied Physics, 2009, 42, 225208.	1.3	11
204	In vitro interactions between mammary fibroblasts (Hs 578Bst) and cancer epithelial cells (MCF-7) modulate aromatase, steroid sulfatase and 17β-hydroxysteroid dehydrogenases. Molecular and Cellular Endocrinology, 2015, 412, 339-348.	1.6	11
205	A comparison of adsorbed and grafted fibronectin coatings under static and dynamic conditions. Physical Chemistry Chemical Physics, 2016, 18, 24704-24712.	1.3	11
206	A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures. Journal of Materials Science and Technology, 2021, 63, 54-61.	5.6	11
207	Surface processing for iron-based degradable alloys: A preliminary study on the importance of acid pickling. Bioactive Materials, 2022, 11, 166-180.	8.6	11
208	Growth Factors and Biological Supports for Endothelial Cell Lining: In Vitro Study. International Journal of Artificial Organs, 1993, 16, 609-619.	0.7	10
209	Lipid uptake in synthetic vascular prostheses explanted from humans. Biomaterials, 1999, 20, 1023-1032.	5.7	10
210	Fat- and Bone Marrow-impregnated Small Diameter PTFE Grafts. European Journal of Vascular and Endovascular Surgery, 1999, 18, 308-314.	0.8	10
211	Experimental validation of a new approach for the development of mechano-compatible composite scaffolds for vascular tissue engineering. Journal of Materials Science: Materials in Medicine, 2008, 19, 2551-2554.	1.7	10
212	Adipogenesis in Nonadherent and Adherent Bone Marrow Stem Cells Grown in Fibrin Gel and in the Presence of Adult Plasma. Cells Tissues Organs, 2008, 187, 186-198.	1.3	10
213	Editorial. Acta Biomaterialia, 2010, 6, 1679-1679.	4.1	10
214	Degradable metallic biomaterials for cardiovascular applications. , 2010, , 379-404.		10
215	Improvement of Collagen Hydrogel Scaffolds Properties by the Addition of Konjac Glucomannan. Advanced Materials Research, 0, 409, 187-192.	0.3	10
216	A New Bioreactor Adapts to Materials State and Builds a Growth Model for Vascular Tissue Engineering. Artificial Organs, 2012, 36, 438-445.	1.0	10

#	Article	IF	CITATIONS
217	Characterization of Amorphous Oxide Nano-Thick Layers on 316L Stainless Steel by Electron Channeling Contrast Imaging and Electron Backscatter Diffraction. Microscopy and Microanalysis, 2016, 22, 997-1006.	0.2	10
218	Augmented Angiogenic Factors Expression via FP Signaling Pathways in Peritoneal Endometriosis. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4752-4763.	1.8	10
219	Rotationâ€based technique for the rapid densification of tubular collagen gel scaffolds. Biotechnology Journal, 2016, 11, 1673-1679.	1.8	10
220	A new dextran-graft-polybutylmethacrylate copolymer coated on 316L metallic stents enhances endothelial cell coverage. Acta Biomaterialia, 2012, 8, 3509-3515.	4.1	9
221	The role of shear stress on mechanically stimulated engineered vascular substitutes: influence on mechanical and biological properties. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 60-67.	1.3	9
222	Measurement of the nonmagnetic coating thickness of core-shell magnetic nanoparticles by controlled magnetization magnetic force microscopy. AIP Conference Proceedings, 2016, , .	0.3	9
223	Effect of electrolyte composition and deposition current for Fe/Fe-P electroformed bilayers for biodegradable metallic medical applications. Materials Science and Engineering C, 2017, 70, 195-206.	3.8	9
224	Influence of cold rolling on inÂvitro cytotoxicity and electrochemical behaviour of an Fe-Mn-C biodegradable alloy in physiological solutions. Heliyon, 2018, 4, e00926.	1.4	9
225	Surface modifications by plasma treatment, chemical grafting and over dyeing of polyamide nets to improve the antifouling performance in the aquaculture field. Dyes and Pigments, 2019, 166, 107-113.	2.0	9
226	A simple and effective approach to produce tubular polysaccharideâ€based hydrogel scaffolds. Journal of Applied Polymer Science, 2020, 137, 48510.	1.3	9
227	Effect of laser welding on the mechanical and degradation behaviour of Fe-20Mn-0.6C bioabsorbable alloy. Journal of Materials Research and Technology, 2020, 9, 13474-13482.	2.6	9
228	On the adhesion of diamondâ€like carbon coatings deposited by lowâ€pressure plasma on 316L stainless steel. Surface and Interface Analysis, 2021, 53, 658-671.	0.8	9
229	Polysaccharide-based layer-by-layer nanoarchitectonics with sulfated chitosan for tuning anti-thrombogenic properties. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112359.	2.5	9
230	Histopathologic Findings in Synthetic and Biologic Explanted Grafts Used in Peripheral Arterial Reconstruction. ASAIO Journal, 1994, 40, M279-M283.	0.9	8
231	Perfluorocarbon Emulsions Cytotoxic Effects on Human Fibroblasts and Effect of Aging on Particle Size Distribution. Artificial Organs, 2007, 31, 649-653.	1.0	8
232	Annealing and ultraviolet treatment of plasma fluorocarbon films for enhanced cohesion and stability. Journal of Applied Polymer Science, 2010, 118, 3176-3186.	1.3	8
233	Perspectives on the advanced control of bioreactors for functional vascular tissue engineering <i>in vitro</i> . Expert Review of Medical Devices, 2012, 9, 233-239.	1.4	8
234	Stable modification of PDMS surface properties by plasma polymerization: Innovative process of allylamine PECVD deposition and microfluidic devices sealing. Surface and Coatings Technology, 2012, 206, 4303-4309.	2.2	8

#	Article	IF	CITATIONS
235	Carbides and their Role in Advanced Mechanical Properties of L605 Alloy: Implications for Medical Devices. Materials Science Forum, 0, 783-786, 1354-1359.	0.3	8
236	Fibronectin adsorption on surface-modified polyetherurethanes and their differentiated effect on specific blood elements related to inflammatory and clotting processes. Biointerphases, 2016, 11, 029809.	0.6	8
237	Plasma-immersion ion implantation surface oxidation on a cobalt-chromium alloy for biomedical applications. Biointerphases, 2020, 15, 041004.	0.6	8
238	Effect of Silver on Corrosion Behavior of Plastically Deformed Twinning-Induced Plasticity Steel for Biodegradable Stents. Jom, 2020, 72, 1892-1901.	0.9	8
239	In-Situ One-Step Direct Loading of Agents in Poly(acrylic acid) Coating Deposited by Aerosol-Assisted Open-Air Plasma. Polymers, 2021, 13, 1931.	2.0	8
240	Mechanical and degradation behavior of three Fe-Mn-C alloys for potential biomedical applications. Materials Today Communications, 2021, 27, 102250.	0.9	8
241	Title is missing!. , 1999, 9, 35-38.		8
242	Lipid uptake in expanded polytetrafluoroethylene vascular grafts. Journal of Vascular Surgery, 1998, 28, 527-534.	0.6	7
243	Laparoscopic end-to-end aortobifemoral bypass with reimplantation of the inferior mesenteric artery. Surgical Endoscopy and Other Interventional Techniques, 1999, 13, 449-451.	1.3	7
244	The Role of Collagen Type I on Hematopoietic and Mesenchymal Stem Cells Expansion and Differentiation. Advanced Materials Research, 0, 409, 111-116.	0.3	7
245	Transgenic zebrafish model for quantification and visualization of tissue toxicity caused by alloying elements in newly developed biodegradable metal. Scientific Reports, 2018, 8, 13818.	1.6	7
246	Six-Month Long <i>In Vitro</i> Degradation Tests of Biodegradable Twinning-Induced Plasticity Steels Alloyed with Ag for Stent Applications. ACS Biomaterials Science and Engineering, 2021, 7, 3669-3682.	2.6	7
247	Balloon expandable coronary stent materials: a systematic review focused on clinical success. In Vitro Models, 2022, 1, 151-175.	1.0	7
248	Lipid uptake in ePTFE arterial prostheses implanted in humans. Journal of Materials Science: Materials in Medicine, 1996, 7, 40-45.	1.7	6
249	Lipid Concentration Profile across the Wall of Pseudoatherosclerotic Synthetic Arterial Prostheses Using FTIR Microspectroscopy. Analytical Chemistry, 1998, 70, 1041-1044.	3.2	6
250	New generation of medical implants: Metallic biodegradable coronary stent. , 2011, , .		6
251	Modulatory effect of a complex fraction derived from colostrum on fibroblast contractibility and consequences on repair tissue. International Wound Journal, 2011, 8, 280-290.	1.3	6
252	High Performance Beta Titanium Alloys as a New Material Perspective for Cardiovascular Applications. Materials Science Forum, 0, 706-709, 578-583.	0.3	6

#	Article	IF	CITATIONS
253	Degradation of 4-ChlorobenzoÃ⁻c Acid in a Thin Falling Film Dielectric Barrier Discharge Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 10387-10396.	1.8	6
254	Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering. Scientific World Journal, The, 2015, 2015, 1-9.	0.8	6
255	Interaction of phosphorylcholine with fibronectin coatings: Surface characterization and biological performances. Applied Surface Science, 2017, 396, 1613-1622.	3.1	6
256	Hydrophobe-substituted bPEI derivatives: boosting transfection on primary vascular cells. Science China Materials, 2017, 60, 529-542.	3.5	6
257	Development, Validation, and Performance of Chitosanâ€Based Coatings Using Catechol Coupling. Macromolecular Bioscience, 2020, 20, e1900253.	2.1	6
258	Influence of cross – Rolling on the microstructure and mechanical properties of Zn bioabsorbable alloys. Materials Letters, 2020, 279, 128504.	1.3	6
259	Melt Electrowriting of a Photoâ€Crosslinkable Poly(<i>ε</i> aprolactone)â€Based Material into Tubular Constructs with Predefined Architecture and Tunable Mechanical Properties. Macromolecular Materials and Engineering, 0, , 2200097.	1.7	6
260	A model for laparoscopic aortic aneurysm resection. Surgical Endoscopy and Other Interventional Techniques, 1999, 13, 654-657.	1.3	5
261	Modeling Lipid Uptake in Expanded Polytetrafluoroethylene Vascular Prostheses and Its Effects on Mechanical Properties. Artificial Organs, 2000, 24, 334-345.	1.0	5
262	Comparison of a Plasma-based Composite Biologic Sealant With Fibrin Glue (Tisseel??) for Vascular Anastomoses. Surgical Laparoscopy, Endoscopy and Percutaneous Techniques, 2004, 14, 335-339.	0.4	5
263	Development of a Collagen/Clay Nanocomposite Biomaterial. Materials Science Forum, 0, 706-709, 461-466.	0.3	5
264	In Situ control and modification of the probe magnetization state for accurate magnetic force microscopy. AIP Conference Proceedings, 2017, , .	0.3	5
265	Surface modification of L605 by oxygen plasma immersion ion implantation for biomedical applications. MRS Communications, 2018, 8, 1404-1412.	0.8	5
266	Lowâ€pressure plasma treatment for direct amination of L605 CoCr alloy for the further covalent grafting of molecules. Plasma Processes and Polymers, 2018, 15, 1700214.	1.6	5
267	Optimisation of fluorapatite coating synthesis applied to a biodegradable substrate. Surface Engineering, 2019, 35, 255-265.	1.1	5
268	Centrifugally spun mats based on biopolyesters/hydroxyapatite and their potential as bone scaffolds. Journal of Applied Polymer Science, 2021, 138, app50139.	1.3	5
269	Development of Multifunctional Materials Based on Poly(ether ether ketone) with Improved Biological Performances for Dental Applications. Materials, 2021, 14, 1047.	1.3	5
270	Efficient extraction of a high molecular weight ulvan from stranded Ulva sp. biomass: application on the active biomembrane synthesis. Biomass Conversion and Biorefinery, 2023, 13, 3975-3985.	2.9	5

#	Article	IF	CITATIONS
271	Flexor tendon repair using a reinforced tubular, medicated electrospun construct. Journal of Orthopaedic Research, 2022, 40, 750-760.	1.2	5
272	On arginineâ€based polyurethaneâ€blends specific to vascular prostheses. Journal of Applied Polymer Science, 2021, 138, 51247.	1.3	5
273	Detecting Respiratory Rate Using Flexible Multimaterial Fiber Electrodes Designed for a Wearable Garment. IEEE Sensors Journal, 2022, 22, 13552-13561.	2.4	5
274	Design of an electrospun tubular construct combining a mechanical and biological approach to improve tendon repair. Journal of Materials Science: Materials in Medicine, 2022, 33, .	1.7	5
275	How to design a structure able to mimic the arterial wall mechanical behavior?. Journal of Materials Science, 2005, 40, 2675-2677.	1.7	4
276	Evaluation of the Adhesion of Ultra-Thin Teflon-Like Films Deposited by Plasma on 316L Stainless Steel for Long-Term Stable Drug-Eluting Stents. Advanced Materials Research, 2006, 15-17, 119-124.	0.3	4
277	On the Interface between Plasma Fluorocarbon Films and 316L Stainless Steel Substrates for Advanced Coated Stents. Advanced Materials Research, 0, 409, 117-122.	0.3	4
278	Caveolin: A possible biomarker of degradable metallic materials toxicity in vascular cells. Acta Biomaterialia, 2013, 9, 8754-8760.	4.1	4
279	The Potential of Nanomaterials for Drug Delivery, Cell Tracking, and Regenerative Medicine 2014. Journal of Nanomaterials, 2015, 2015, 1-2.	1.5	4
280	Optical emission spectroscopy as a process-monitoring tool in plasma enhanced chemical vapor deposition of amorphous carbon coatings - multivariate statistical modelling. Thin Solid Films, 2018, 649, 106-114.	0.8	4
281	Incrementing the Frequency of Dynamic Strain on SMC-Cellularised Collagen-Based Scaffolds Affects Extracellular Matrix Remodeling and Mechanical Properties. ACS Biomaterials Science and Engineering, 2018, 4, 3759-3767.	2.6	4
282	Enhancing the barrier properties of a fluorocarbon plasma-deposited coating by producing an Interface of amorphous oxide layer on 316L stainless steel for stent applications. Surface and Coatings Technology, 2018, 347, 209-216.	2.2	4
283	Iron-Based Degradable Implants. , 2019, , 374-385.		4
284	Polydopamine-modified interface improves the immobilization of natural bioactive-dye onto textile and enhances antifungal activity. Biointerphases, 2020, 15, 041011.	0.6	4
285	Microstructural Precipitation Evolution and In Vitro Degradation Behavior of a Novel Chill-Cast Zn-Based Absorbable Alloy for Medical Applications. Metals, 2020, 10, 586.	1.0	4
286	Biocasting of an elastin-like recombinamer and collagen bi-layered model of the tunica adventitia and external elastic lamina of the vascular wall. Biomaterials Science, 2021, 9, 3860-3874.	2.6	4
287	Ultrashort Laser Texturing for Tuning Surface Morphology and Degradation Behavior of the Biodegradable Fe–20Mn Alloy for Temporary Implants. Advanced Engineering Materials, 2022, 24, . ————————————————————————————————————	1.6	4
288	Investigation of 3â€aminopropyltrimethoxysilane for direct deposition of thin films containing primary amine groups by openâ€air plasma jets. Plasma Processes and Polymers, 2022, 19, .	1.6	4

#	Article	IF	CITATIONS
289	Reaction of a hydrated electron with gentamycin and collagen—A pulse radiolysis study. Radiation Physics and Chemistry, 1996, 47, 93-97.	1.4	3
290	Development of a flow simulator to study haemodynamic behaviour of natural and artificial blood vessels under physiologic flow conditions. Journal of Medical Engineering and Technology, 1999, 23, 83-95.	0.8	3
291	Fourier Transform Infrared Spectroscopy Application to Vascular Biology: Comparative Analysis of Human Internal Mammary Artery and Saphenous Vein Wall. Cells Tissues Organs, 2003, 175, 186-191.	1.3	3
292	Atomic Force and Confocal Microscopic Studies of Collagen-Cell-Based Scaffolds for Vascular Tissue Engineering. Advanced Materials Research, 2006, 15-17, 83-88.	0.3	3
293	Design of a Collagen/Silk Mechano-Compatible Composite Scaffold for the Vascular Tissue Engineering: Focus on Compliance. Key Engineering Materials, 2007, 334-335, 1169-1172.	0.4	3
294	Optimization of Culture Conditions in a Bioreactor for Vascular Tissue Engineering Using a Mathematical Model of Vascular Growth and Remodeling. Cardiovascular Engineering and Technology, 2012, 3, 228-236.	0.7	3
295	Arginine-glycine-glutamine and serine-isoleucine-lysine-valine-alanine-valine modified poly(<scp>l</scp> -lactide) films: Bioactive molecules used for surface grafting to guide cellular contractile phenotype. Biointerphases, 2014, 9, 029002.	0.6	3
296	Electroforming as a New Method for Fabricating Degradable Pure Iron Stent. Springer Series in Biomaterials Science and Engineering, 2015, , 85-100.	0.7	3
297	Three-Dimensional Culture Assay to Explore Cancer Cell Invasiveness and Satellite Tumor Formation. Journal of Visualized Experiments, 2016, , .	0.2	3
298	Collagen hydrogel-based scaffolds for vascular tissue regeneration: Mechanical and viscoelastic characterization. , 2017, , 397-439.		3
299	Oxidative Plasma Treatment of Fluorocarbon Surfaces for Blood-Contacting Applications. Materials Science Forum, 2018, 941, 2528-2533.	0.3	3
300	Nano-Thick Amorphous Oxide Layer Produced by Plasma on Type 316L Stainless Steel for Improved Corrosion Resistance Under Plastic Deformation. Corrosion, 2018, 74, 1011-1022.	0.5	3
301	Pleiotrophin: Analysis of the endothelialisation potential. Advances in Medical Sciences, 2019, 64, 144-151.	0.9	3
302	Comparison of the linking arm effect on the biological performance of a CD31 agonist directly grafted on L605 CoCr alloy by a plasma-based multistep strategy. Biointerphases, 2019, 14, 051009.	0.6	3
303	Mechanical Characterization of Methanol Plasma Treated Fluorocarbon Ultrathin Films Through Atomic Force Microscopy. Frontiers in Materials, 2020, 6, .	1.2	3

304

#	Article	IF	CITATIONS
307	Proteomics as a tool to gain next level insights into photo-crosslinkable biopolymer modifications. Bioactive Materials, 2022, 17, 204-220.	8.6	3
308	Unrelated bone marrow transplantation in thalassemia. The experience of the Italian Bone Marrow Transplant Group (GITMO). Haematologica, 2002, 87, 58-61.	1.7	3
309	Course of the initial epithelial lesions associated with autologous bile duct replacement. American Journal of Surgery, 1981, 141, 187-193.	0.9	2
310	Plasma and Electrospray Deposition to Improve the Biocompatibility of Stents. Materials Science Forum, 2007, 539-543, 529-534.	0.3	2
311	Low-energy electron and X-ray degradation of biomedical plasma-fluoropolymer. Polymer Degradation and Stability, 2008, 93, 383-391.	2.7	2
312	Evaluation of the Corrosion Protection of Ultra-Thin Plasma Fluorocarbon Film Deposited on 316L Stainless Steel for Long-Term Stable Stents. Materials Science Forum, 2010, 638-642, 10-15.	0.3	2
313	Multivisceral transplantation in pigs: a model for research and training. Einstein (Sao Paulo, Brazil), 2011, 9, 372-376.	0.3	2
314	The Effect of Dynamical Strain on the Maturation of Collagen-Based Cell-Containing Scaffolds for Vascular Tissue Engineering. Advanced Materials Research, 0, 409, 152-157.	0.3	2
315	Why Mechanical Properties of Collagen Scaffolds Should Be Tested in a Pseudo-Physiological Environment?. Advanced Materials Research, 0, 409, 158-163.	0.3	2
316	1st Minimum Consensus Meeting on Standardization in Biodegradable Metals. Acta Biomaterialia, 2013, 9, 8472-8473.	4.1	2
317	Histological study of stem-like cells in human colon adenocarcinoma at different stages of the disease. Biotechnic and Histochemistry, 2013, 88, 222-234.	0.7	2
318	Susceptibility to Stress Corrosion Cracking of Fe-35Mn Alloy under a Pseudo-Physiological Condition. Applied Mechanics and Materials, 0, 284-287, 216-219.	0.2	2
319	Surface Characterization of Biomimetic Hydroxyapatite-Silver Functionalized on Polydopamine Film. Advanced Materials Research, 2015, 1125, 395-400.	0.3	2
320	Medical Devices: Coronary Stents. , 2019, , 386-398.		2
321	Tubular bioartificial organs: From physiological requirements to fabrication processes and resulting properties. A critical review Cells Tissues Organs, 2021, , .	1.3	2
322	Progresses in Synthetic Vascular Prostheses: Toward the Endothelialization. Advances in Experimental Medicine and Biology, 2003, 534, 165-177.	0.8	2
323	Coacervation Conditions and Cross-Linking Determines Availability of Carbonyl Groups on Elastin and its Calcification. Crystal Growth and Design, 2020, 20, 7170-7179.	1.4	2
324	Patents on Metallic Biodegradable Stents. Recent Patents on Materials Science, 2010, 3, 140-145.	0.5	2

#	Article	IF	CITATIONS
325	Physiologically relevant platform for an advanced in vitro model of the vascular wall: focus on in situ fabrication and mechanical maturation. In Vitro Models, 2022, 1, 179.	1.0	2
326	Aerosolâ€assisted openâ€air plasma deposition of acrylateâ€based composite coatings: Molecule release control through precursor selection. Plasma Processes and Polymers, 2022, 19, .	1.6	2
327	Laparoscopic Surgical Manipulations Affect the Mechanical Properties and the Microstructure of Polymeric Sutures. Materials Science Forum, 2007, 539-543, 161-166.	0.3	1
328	Macromolecular Biomaterials Interfacing with Cells. Macromolecular Bioscience, 2007, 7, 541-543.	2.1	1
329	Plasma Surface Modification of 316L Stainless Steel for Cardiovascular Stent Coating. Advanced Materials Research, 0, 89-91, 196-201.	0.3	1
330	Ultrasonic Setup for Testing Hydrogels: Preliminary Experiments on Collagen Gels. Advanced Materials Research, 2011, 409, 146-151.	0.3	1
331	Controlling Silver Ion Release from Ag-Based Nanocoatings by Plasma Surface Engineering. Materials Science Forum, 2018, 941, 1625-1631.	0.3	1
332	10th BIOMETAL2018 - International Symposium on Biodegradable Metals. Acta Biomaterialia, 2019, 98, 1-2.	4.1	1
333	Absorbable metals for cardiovascular applications. , 2019, , 523-543.		1
334	Biopolymer-based coatings for cardiovascular applications. , 2020, , 273-287.		1
335	Modulation of Crystallinity through Radiofrequency Electromagnetic Fields in PLLA/Magnetic Nanoparticles Composites: A Proof of Concept. Materials, 2021, 14, 4300.	1.3	1
336	Fe–Mn Alloys Electroforming Process Using Choline Chloride Based Deep Eutectic Solvents. Materials Proceedings, 2021, 5, .	0.2	1
337	Shape Memory Metals. , 2008, , 2418-2426.		0
338	Haematological Performances of Carbon Coated PTFE by Plasma-Based Deposition. Materials Science Forum, 2010, 638-642, 512-517.	0.3	0
339	Haematological Performances of Carbon Coated PTFE by Plasma-Based Deposition. Materials Science Forum, 2010, 638-642, 606-611.	0.3	0
340	Development of a Plasma Process for Microfluidic Devices in the Prospect of Cell Attachment. Advanced Materials Research, 0, 89-91, 598-603.	0.3	0
341	Nanocoatings, degradable metals and surface fonctionnalisation: Towards high-performance cardiovascular biomaterials. , 2011, , .		0
342	Polysaccharides Grafting on Fluorocarbon Films Deposited by Plasma on 316L Stainless Steel for Long Term Stable Stent. Advanced Materials Research, 0, 409, 164-169.	0.3	0

#	Article	IF	CITATIONS
343	Monitoring Compliance and Elastic Modulus in a Bioreactor for Optimal Control of Vascular Tissue Growth. Advanced Materials Research, 0, 409, 123-128.	0.3	0
344	Collagen-Silk Fibroin Fibers: A Promising Scaffold for Vascular Tissue Engineering. Materials Science Forum, 0, 706-709, 572-577.	0.3	0
345	Acta Biomaterialia Special Issue: 4th Biometal 2012, Maratea, Italy. Acta Biomaterialia, 2013, 9, 8474.	4.1	0
346	IN FOCUS: INTERFACES IN BIOMEDICAL APPLICATIONS. Biointerphases, 2014, 9, 028701.	0.6	0
347	Magnetic Properties of Mg _{0.4} Ca _{0.6} Fe ₂ O ₄ Nanoparticles Synthesized by Sol-Gel Method for Hyperthermia Treatment. Key Engineering Materials, 0. 631, 193-197.	0.4	0
348	12. Advanced materials for biomedical applications. , 2014, , 277-332.		0
349	Coating stability for stents. , 2018, , 199-209.		0
350	Synthesis and characterization of a polymeric network made of polyethylene glycol and chitosan as a treatment with antibacterial properties for skin wounds. Journal of Biomaterials Applications, 2020, 35, 274-286.	1.2	0
351	A New Preventive Strategy for Better Remediation of Marine Biofouling by an Eco-friendly Physical and Morphological Modification Process. Silicon, 2020, 12, 2901-2909.	1.8	0
352	Une cornée artificielle Medecine/Sciences, 2000, 16, 1004.	0.0	0
353	Bioreactors for Tissue Engineering: Focus on Mechanical Constraints. A Comparative Review. Tissue Engineering, 2006, .	4.9	0
354	Patents on Metallic Biodegradable Stents. Recent Patents on Materials Science, 2010, 3, 140-145.	0.5	0
355	Inside Front Cover: Plasma Process. Polym. 7/2022. Plasma Processes and Polymers, 2022, 19, .	1.6	0