
Andrea Antal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2237244/publications.pdf Version: 2024-02-01

ΔΝΟΡΕΛ ΔΝΙΤΛΙ

#	Article	IF	CITATIONS
1	Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 2008, 1, 206-223.	1.6	2,538
2	Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 2014, 125, 2150-2206.	1.5	1,647
3	Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology, 2017, 128, 56-92.	1.5	1,213
4	Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 2007, 72, 208-214.	3.0	900
5	Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology, 2021, 132, 269-306.	1.5	553
6	Increasing Human Brain Excitability by Transcranial High-Frequency Random Noise Stimulation. Journal of Neuroscience, 2008, 28, 14147-14155.	3.6	541
7	Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation, 2008, 1, 97-105.	1.6	425
8	Transcranial alternating current stimulation (tACS). Frontiers in Human Neuroscience, 2013, 7, 317.	2.0	397
9	Frequency-Dependent Electrical Stimulation of the Visual Cortex. Current Biology, 2008, 18, 1839-1843.	3.9	359
10	Direct Current Stimulation over V5 Enhances Visuomotor Coordination by Improving Motion Perception in Humans. Journal of Cognitive Neuroscience, 2004, 16, 521-527.	2.3	352
11	Excitability Changes Induced in the Human Primary Visual Cortex by Transcranial Direct Current Stimulation: Direct Electrophysiological Evidence. , 2004, 45, 702.		339
12	Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 2004, 19, 2888-2892.	2.6	295
13	Anodal Transcranial Direct Current Stimulation of the Motor Cortex Ameliorates Chronic Pain and Reduces Short Intracortical Inhibition. Journal of Pain and Symptom Management, 2010, 39, 890-903.	1.2	288
14	Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clinical Neurophysiology, 2017, 128, 2318-2329.	1.5	276
15	Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 2017, 128, 589-603.	1.5	275
16	Physiology of Transcranial Direct Current Stimulation. Journal of ECT, 2018, 34, 144-152.	0.6	268
17	Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation. Experimental Brain Research, 2010, 204, 181-187.	1.5	252
18	Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plasticity, 2016, 2016, 1-12.	2.2	241

#	Article	IF	CITATIONS
19	Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex. Current Biology, 2016, 26, 1513-1521.	3.9	241
20	Towards unravelling taskâ€related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience, 2007, 26, 2687-2691.	2.6	239
21	Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 2010, 121, 2165-2171.	1.5	238
22	Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage, 2011, 55, 590-596.	4.2	227
23	Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulation, 2012, 5, 505-511.	1.6	221
24	External modulation of visual perception in humans. NeuroReport, 2001, 12, 3553-3555.	1.2	214
25	The fade-in – Short stimulation – Fade out approach to sham tDCS – Reliable at 1ÂmA for naÃ⁻ve and experienced subjects, but not investigators. Brain Stimulation, 2012, 5, 499-504.	1.6	212
26	Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimulation, 2010, 3, 230-237.	1.6	208
27	Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Experimental Brain Research, 2003, 150, 375-378.	1.5	203
28	Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine. Cephalalgia, 2011, 31, 820-828.	3.9	170
29	Cutaneous perception thresholds of electrical stimulation methods: Comparison of tDCS and tRNS. Clinical Neurophysiology, 2010, 121, 1908-1914.	1.5	147
30	Boosting brain excitability by transcranial high frequency stimulation in the ripple range. Journal of Physiology, 2010, 588, 4891-4904.	2.9	142
31	Transcranial direct current stimulation and the visual cortex. Brain Research Bulletin, 2006, 68, 459-463.	3.0	121
32	Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage, 2014, 85, 1040-1047.	4.2	117
33	Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia, 2003, 41, 1802-1807.	1.6	114
34	Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial. PLoS ONE, 2016, 11, e0156134.	2.5	99
35	Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Frontiers in Neuroscience, 2015, 9, 125.	2.8	90
36	Transcranial electrical stimulation nomenclature. Brain Stimulation, 2019, 12, 1349-1366.	1.6	84

#	Article	lF	CITATIONS
37	Transcranial Direct Current Stimulation and Visual Perception. Perception, 2008, 37, 367-374.	1.2	79
38	Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimulation, 2020, 13, 1124-1149.	1.6	78
39	Impact of transcranial direct current stimulation on fatigue in multiple sclerosis. Restorative Neurology and Neuroscience, 2014, 32, 423-436.	0.7	72
40	Blinding is compromised for transcranial direct current stimulation at 1Â <scp>mA</scp> for 20Âmin in young healthy adults. European Journal of Neuroscience, 2019, 50, 3261-3268.	2.6	70
41	Direct current stimulation over MT+/V5 modulates motion aftereffect in humans. NeuroReport, 2004, 15, 2491-2494.	1.2	69
42	Homeostatic Metaplasticity of the Motor Cortex is Altered during Headache-Free Intervals in Migraine with Aura. Cerebral Cortex, 2008, 18, 2701-2705.	2.9	68
43	Transcranial electrical stimulation modifies the neuronal response to psychosocial stress exposure. Human Brain Mapping, 2014, 35, 3750-3759.	3.6	53
44	Comparing the Efficacy of Excitatory Transcranial Stimulation Methods Measuring Motor Evoked Potentials. Neural Plasticity, 2014, 2014, 1-6.	2.2	51
45	Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clinical Neurophysiology, 2020, 131, 887-911.	1.5	48
46	Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task. Neuropsychologia, 2008, 46, 3157-3161.	1.6	47
47	Electrical stimulation and visual network plasticity. Restorative Neurology and Neuroscience, 2011, 29, 365-374.	0.7	47
48	The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia, 2011, 49, 1974-1980.	1.6	47
49	No correlation between oving phosphene and motor thresholds: a transcranial magnetic stimulation study. NeuroReport, 2004, 15, 297-302.	1.2	45
50	Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES–fMRI approach. NeuroImage, 2016, 140, 110-117.	4.2	45
51	Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory. Brain Stimulation, 2018, 11, 509-517.	1.6	45
52	Cathodal stimulation of human MT+ leads to elevated fMRI signal: A tDCS-fMRI study. Restorative Neurology and Neuroscience, 2012, 30, 255-263.	0.7	44
53	High-Frequency TRNS Reduces BOLD Activity during Visuomotor Learning. PLoS ONE, 2013, 8, e59669.	2.5	41
54	Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation. Frontiers in Neurology, 2016, 7, 154.	2.4	41

#	Article	IF	CITATIONS
55	Pulse configuration-dependent effects of repetitive transcranial magnetic stimulation on visual perception. NeuroReport, 2002, 13, 2229-2223.	1.2	40
56	Right Hemisphere Advantage in Statistical Learning: Evidence From a Probabilistic Sequence Learning Task. Brain Stimulation, 2015, 8, 277-282.	1.6	40
57	A case of refractory orofacial pain treated by transcranial direct current stimulation applied over hand motor area inÂcombination with NMDA agonist drug intake. Brain Stimulation, 2011, 4, 117-121.	1.6	38
58	Prophylactic treatment in menstrual migraine: A proof-of-concept study. Journal of the Neurological Sciences, 2015, 354, 103-109.	0.6	38
59	Toward noninvasive brain stimulation 2.0 in Alzheimer's disease. Ageing Research Reviews, 2022, 75, 101555.	10.9	37
60	Safety of 5ÂkHz tACS. Brain Stimulation, 2014, 7, 92-96.	1.6	34
61	Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Restorative Neurology and Neuroscience, 2014, 32, 403-410.	0.7	32
62	Separating Recognition Processes of Declarative Memory via Anodal tDCS: Boosting Old Item Recognition by Temporal and New Item Detection by Parietal Stimulation. PLoS ONE, 2015, 10, e0123085.	2.5	31
63	Effects of transcranial theta-burst stimulation on acute pain perception. Restorative Neurology and Neuroscience, 2010, 28, 477-484.	0.7	28
64	The role of the occipital face area in holistic processing involved in face detection and discrimination: A tDCS study Neuropsychology, 2015, 29, 409-416.	1.3	28
65	Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task. Neuroscience Letters, 2016, 616, 98-104.	2.1	24
66	Electrophysiological correlates of visual categorization: evidence for cognitive dysfunctions in early Parkinson's disease. Cognitive Brain Research, 2002, 13, 153-158.	3.0	23
67	Personalized repetitive transcranial magnetic stimulation temporarily alters default mode network in healthy subjects. Scientific Reports, 2019, 9, 5631.	3.3	23
68	Î ₋ Î ³ Cross-Frequency Transcranial Alternating Current Stimulation over the Trough Impairs Cognitive Control. ENeuro, 2020, 7, ENEURO.0126-20.2020.	1.9	22
69	Modulation of Conflict Processing by Theta-Range tACS over the Dorsolateral Prefrontal Cortex. Neural Plasticity, 2019, 2019, 1-13.	2.2	21
70	Transorbital alternating current stimulation modifies BOLD activity in healthy subjects and in a stroke patient with hemianopia: A 7 Tesla fMRI feasibility study. International Journal of Psychophysiology, 2020, 154, 80-92.	1.0	21
71	Neuroplastic effects of transcranial near-infrared stimulation (tNIRS) on the motor cortex. Frontiers in Behavioral Neuroscience, 2015, 9, 147.	2.0	20
72	Anodal tDCS Over the Left DLPFC Did Not Affect the Encoding and Retrieval of Verbal Declarative Information. Frontiers in Neuroscience, 2017, 11, 452.	2.8	20

#	Article	IF	CITATIONS
73	Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting. Frontiers in Cellular Neuroscience, 2015, 9, 374.	3.7	19
74	Transcranial direct current stimulation over the left prefrontal cortex increases randomness of choice in instrumental learning. Cortex, 2015, 63, 145-154.	2.4	17
75	Transcranial Magnetic and Direct Current Stimulation in the Treatment of Depression: Basic Mechanisms and Challenges of Two Commonly Used Brain Stimulation Methods in Interventional Psychiatry. Neuropsychobiology, 2020, 79, 397-407.	1.9	16
76	Placebo Intervention Enhances Reward Learning in Healthy Individuals. Scientific Reports, 2017, 7, 41028.	3.3	15
77	The impact of electrical stimulation techniques on behavior. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 649-659.	2.8	14
78	5 kHz Transcranial Alternating Current Stimulation: Lack of Cortical Excitability Changes When Grouped in a Theta Burst Pattern. Frontiers in Human Neuroscience, 2017, 10, 683.	2.0	14
79	Central nervous system physiology. Clinical Neurophysiology, 2021, 132, 3043-3083.	1.5	12
80	Reversibility of visual field defects through induction of brain plasticity: vision restoration, recovery and rehabilitation using alternating current stimulation. Neural Regeneration Research, 2020, 15, 1799.	3.0	11
81	Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study. Brain Sciences, 2020, 10, 888.	2.3	10
82	Medial prefrontal cortex involvement in aesthetic appreciation of paintings: a tDCS study. Cognitive Processing, 2020, 21, 65-76.	1.4	8
83	Letter to the editor: A late response from a female scientist to Hoy, â€~gender imbalance at brain stimulation conferences: We have a problem and it is Everyone's problem'. Brain Stimulation, 2017, 10, 855.	1.6	3
84	New Results on Brain Stimulation in Chronic Pain. Neurology International Open, 2017, 01, E312-E315.	0.4	3
85	Transcranial Direct Current Stimulation in the Treatment of Facial Pain. Progress in Neurological Surgery, 2020, 35, 116-124.	1.3	3
86	Reply to "The role of primary visual cortex after transorbital alternating current stimulation in low vision patients― Clinical Neurophysiology, 2020, 131, 2329-2330.	1.5	1
87	Basic Mechanisms of Transcranial Alternating Current and Random Noise Stimulation. , 2021, , 21-28.		1
88	Portable qEEG and HD-tCS Device for Point-of-Injury Traumatic Brain Injury Diagnostics. Studies in Health Technology and Informatics, 2017, 237, 198-203.	0.3	0