
Sy-Hann Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2236934/publications.pdf Version: 2024-02-01

SV-HANN CHEN

#	Article	IF	CITATIONS
1	Silverâ€doped nickel oxide as an efficient holeâ€transport layer in polymer lightâ€emitting diodes. Microscopy Research and Technique, 2022, 85, 2390-2396.	1.2	3
2	Highly-luminous performance of polymer light-emitting devices utilizing platinum/nickelous oxide as the anode material. Synthetic Metals, 2021, 277, 116796.	2.1	5
3	Localized surface plasmon resonance enhanced by the light-scattering property of silver nanoparticles for improved luminescence of polymer light-emitting diodes. Journal of Industrial and Engineering Chemistry, 2021, 103, 283-291.	2.9	10
4	Luminous efficiency improvement of polymer light-emitting diodes with platinum nanolayer at the PEDOT:PSS–ITO interface. Optics Letters, 2021, 46, 6039.	1.7	2
5	Influence of the Silver Nanocrystal Shape on the Luminous Efficiency of Blue-Emitting Polymer Light-Emitting Diodes. Langmuir, 2019, 35, 15114-15120.	1.6	8
6	High-performance polymer LED using NiO _x as a hole-transport layer. Journal of Materials Chemistry C, 2019, 7, 13510-13517.	2.7	9
7	Enhanced Device Performances of Blueâ€Emitting PLEDs Coupled with Silverâ€Nanoicosahedrons. Particle and Particle Systems Characterization, 2019, 36, 1800376.	1.2	7
8	Polymer LEDs with improved efficacy via periodic nanostructure-based aluminum. Optics Letters, 2019, 44, 4327.	1.7	4
9	Differences in the nanoscale electrical properties of GaN films grown on sapphire and ZnO substrates by molecular beam epitaxy. Microscopy Research and Technique, 2017, 80, 731-736.	1.2	1
10	Nanoscale electrical properties of ZnO nanorods grown by chemical bath deposition. Microscopy Research and Technique, 2017, 80, 671-679.	1.2	4
11	Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer. Optics Letters, 2017, 42, 3411.	1.7	15
12	Magnetic domain imaging of nano-magnetic films using magnetic force microscopy with polar and longitudinally magnetized tips. Microscopy Research and Technique, 2016, 79, 917-922.	1.2	0
13	Fabrication of efficient thermoacoustic device with an interdigitated-like electrode on indium tin oxide glass. Japanese Journal of Applied Physics, 2016, 55, 106702.	0.8	1
14	InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer. Optics Express, 2016, 24, 11601.	1.7	13
15	Light enhancement of plasmonic nano-structure for PLEDs at RGB wavelengths. Organic Electronics, 2016, 38, 337-343.	1.4	14
16	Differences between the luminescence efficiencies of PLEDs based on Ag-nanoparticles/GZO/PEN and GZO/Ag-nanoparticles/PEN anodes. Plasmonics, 2015, 10, 925-930.	1.8	3
17	High PLED Enhancement by Surface Plasmon Coupling of Au Nanoparticles. Plasmonics, 2015, 10, 257-261.	1.8	9
18	InGaN Light-Emitting Diodes with Multiple-Porous GaN Structures Fabricated through a Photoelectrochemical Etching Process. ECS Journal of Solid State Science and Technology, 2014, 3, R185-R188.	0.9	6

SY-HANN CHEN

#	Article	IF	CITATIONS
19	Refractive index profiling of a few-mode fiber from fundamental mode excitation. Optics Communications, 2014, 323, 138-142.	1.0	1
20	Influence of galliumâ€doped zincâ€oxide thickness on polymer lightâ€emitting diode luminescence efficiency. Microscopy Research and Technique, 2013, 76, 783-787.	1.2	3
21	Enhanced luminescence efficiency of Ag nanoparticles dispersed on indium tin oxide for polymer light-emitting diodes. Optics Express, 2013, 21, 26236.	1.7	12
22	Light Enhancement of Plasmonic Nanostructures for Polymer Light-Emitting Diodes at Different Wavelengths. Applied Physics Express, 2012, 5, 062001.	1.1	6
23	Enhancement of Light Extraction Efficiency of InGaN Light-Emitting Diodes with an Air-Hole-Array Structure. Japanese Journal of Applied Physics, 2012, 51, 01AG05.	0.8	0
24	High-Performance Polymer Light-Emitting Diodes Based on a Gallium-Doped Zinc Oxide/Polyimide Substrate. IEEE Transactions on Electron Devices, 2012, 59, 1709-1715.	1.6	6
25	InGaN-based light-emitting diodes with an embedded conical air-voids structure. Optics Express, 2011, 19, A57.	1.7	19
26	InGaN light emitting diodes with a laser-treated tapered GaN structure. Optics Express, 2011, 19, A1126.	1.7	6
27	Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode. Optics Express, 2011, 19, 16843.	1.7	12
28	Li2CO3 as an n-type dopant on Alq3-based organic light emitting devices. Journal of Applied Physics, 2011, 109, .	1.1	33
29	Influence of the grain boundary barrier height on the electrical properties of Gallium doped ZnO thin films. Applied Surface Science, 2011, 257, 6498-6502.	3.1	43
30	Increasing the PLED Luminescence Efficiency by Exploiting the Surface Plasmon Resonance Effect. Journal of the Electrochemical Society, 2011, 158, J53.	1.3	7
31	Differences between nanoscale structural and electrical properties of AZO:N and AZO used in polymer lightâ€emitting diodes. Microscopy Research and Technique, 2010, 73, 202-205.	1.2	5
32	Measurement of edge verticality of optical recording bits on bluâ€ray discs using scanning probe microscopy. Microscopy Research and Technique, 2010, 73, 1-4.	1.2	10
33	Enhancement of Electron Injection in Organic Light Emitting Diodes Using an Ultrathin Sodium Carbonate Buffer Layer. Journal of the Electrochemical Society, 2010, 157, J135.	1.3	14
34	Using a slightly tapered optical fiber to attract and transport microparticles. Optics Express, 2010, 18, 5574.	1.7	18
35	Improved electron injection into Alq3 based OLEDs using a thin lithium carbonate buffer layer. Synthetic Metals, 2010, 160, 1749-1753.	2.1	13
36	Dependence of local structural and electrical properties of nitride doped zinc oxide films on growth temperature. Journal of Vacuum Science & Technology B, 2009, 27, 1933.	1.3	5

SY-HANN CHEN

#	Article	IF	CITATIONS
37	Relationship between the photoluminescence and conductivity of undoped ZnO thin films grown with various oxygen pressures. Applied Surface Science, 2009, 256, 792-796.	3.1	61
38	Influence of the substrate temperature on the electrical and magnetic properties of ZnO : N thin films grown by pulse laser deposition. Journal Physics D: Applied Physics, 2009, 42, 035001.	1.3	31
39	Nanoscale surface electrical properties of zinc oxide films investigated by conducting atomic force microscopy. Microscopy Research and Technique, 2008, 71, 1-4.	1.2	14
40	Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy. Journal of Applied Physics, 2008, 104, .	1.1	43
41	Rapid and accurate measurement for phase-change optical recording bits. Microscopy Research and Technique, 2007, 70, 325-328.	1.2	2
42	Convenient near-field optical measurement and analysis of polystyrene spheres. Vacuum, 2006, 81, 129-132.	1.6	5
43	Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 2003-2007.	0.9	4
44	Advanced electrical imaging of dislocations in Mg–In-codoped GaN films. Journal of Vacuum Science & Technology B, 2006, 24, 108.	1.3	7
45	Study of optical recording bits by scanning surface potential microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 663-665.	0.9	4
46	Work-function changes of treated indium-tin-oxide films for organic light-emitting diodes investigated using scanning surface-potential microscopy. Journal of Applied Physics, 2005, 97, 073713.	1.1	42
47	Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy. Applied Physics Letters, 2002, 81, 2572-2574.	1.5	73
48	Construction of a near-field spectrum analysis system using bent tapered fiber probes. Review of Scientific Instruments, 2001, 72, 268-270.	0.6	2
49	Nanostructure patterns written in polycarbonate by a bent optical fiber probe. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2299.	1.6	2
50	Nanoscale optical imaging on an electroluminescent polymer by conducting atomic force microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 308.	1.6	7
51	Nanoscale surface electrical properties of indium–tin–oxide films for organic light emitting diodes investigated by conducting atomic force microscopy. Journal of Applied Physics, 2001, 89, 3976-3979.	1.1	42
52	True near-field optical characters of a GaAlAs semiconductor laser diode. Review of Scientific Instruments, 1999, 70, 4463-4465.	0.6	4
53	Direct Detection of Virus-Like Particles Using Color Images of Plasmonic Nanostructures. Optics Express, 0, , .	1.7	1