Yan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2236695/publications.pdf

Version: 2024-02-01

87	1,995	25	42
papers	citations	h-index	g-index
87	87	87	1865 citing authors
all docs	docs citations	times ranked	

#	Article	lF	CITATIONS
1	A phase-to-intensity strategy of angular velocity measurement based on photonic orbital angular momentum. Nanophotonics, 2022, $11,865-872$.	2.9	15
2	Dual-parameter demodulated torsion sensor based on the Lyot filter with a twisted polarization-maintaining fiber. Optics Express, 2022, 30, 2288.	1.7	4
3	High Sensitivity Fiber Gas Pressure Sensor with Two Separated Fabry–Pérot Interferometers Based on the Vernier Effect. Photonics, 2022, 9, 31.	0.9	8
4	Ultra-Sensitive Optical Fiber Humidity Sensor via Au-Film-Assisted Polyvinyl Alcohol Micro-Cavity and Vernier Effect. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	11
5	On-Chip Optical Vortex Generation and Topological Charge Control by Methods of Wave Vector Manipulation. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	O
6	Ultra-Compact Full-Angle-Range Direction-Distinguishable Tilt Sensor Based on Fiber in-Line Polymer Microcavity. Journal of Lightwave Technology, 2022, 40, 3084-3089.	2.7	3
7	Chiro-optical fields with asymmetric orbital angular momentum and polarization. Optics Express, 2022, 30, 7467.	1.7	5
8	Design and modeling of a graphene-based composite structure optical pressure sensor. Optics Express, 2022, 30, 10400.	1.7	1
9	Micro-newton strain force and temperature synchronous fiber sensor with a high Q-factor based on the quartz microbubble integrated in the capillary-taper structure. Optics Express, 2022, 30, 8750.	1.7	3
10	Microfluidic volume optical monitoring system based on functional channels integrated by hollow cylindrical waveguide. Measurement: Journal of the International Measurement Confederation, 2022, 193, 110951.	2.5	3
11	Bovine serum albumin label-free concentration sensor based on silica corrosion quantitative monitoring system. Optics Express, 2022, 30, 21725.	1.7	0
12	Rotating structured light based on perfect vortex. Applied Physics Express, 2021, 14, 032004.	1.1	4
13	On-Chip Orbital Angular Momentum Sorting With a Surface Plasmon Polariton Lens. Journal of Lightwave Technology, 2021, 39, 1423-1428.	2.7	7
14	Optical Fiber Gas Pressure Sensor Based on Polydimethylsiloxane Microcavity. Journal of Lightwave Technology, 2021, 39, 2988-2993.	2.7	45
15	The Introduction of a Cavitation Bubble in Polymer-Capped Fiber Temperature Sensor to Increase Its Wavelength Demodulation Range. IEEE Sensors Journal, 2021, 21, 13283-13289.	2.4	1
16	High Sensitivity Flow Velocity Sensor Based on All-Fiber Target-Type Structure. Journal of Lightwave Technology, 2021, 39, 4174-4178.	2.7	5
17	Extending the Detection Range of Optical Vortices by Dense Phase Stitching Algorithm. Journal of Lightwave Technology, 2021, 39, 4974-4979.	2.7	1
18	Measurement of multiplexed fractional vortices with integer mode interval. Results in Physics, 2021, 29, 104699.	2.0	3

#	Article	IF	Citations
19	An Ultra-Sensitive Fiber Sensor for Micro-Newton Contact Force Detection Based on a Polymerized Hollow-Cylinder by One-Step Fabrication. IEEE Sensors Journal, 2021, 21, 25710-25715.	2.4	4
20	Hollow Silica Photonic Crystal Fiber Guiding 101 Orbital Angular Momentum Modes Without Phase Distortion in C+L Band. Journal of Lightwave Technology, 2020, 38, 1010-1018.	2.7	30
21	Multiparameter Controllable Chiral Optical Patterns. Physical Review Applied, 2020, 14, .	1.5	13
22	Polarization-multiplexed metalens via spin-independent manipulation of spin–orbit interactions. Journal of Optics (United Kingdom), 2020, 22, 085103.	1.0	2
23	Design and theoretical demonstration of an on-chip metal Bragg grating switch based on two-beam interference. Journal Physics D: Applied Physics, 2020, 53, 255101.	1.3	1
24	Laser-induced suspension of a microbubble in a liquid-filled fiber microcavity for large-range tilt sensing. Optics Letters, 2020, 45, 2303.	1.7	5
25	Energy-Efficiency Switchable Grating Coupler for Intra-Chip Wireless Optical Interconnection. IEEE Photonics Technology Letters, 2019, 31, 1429-1432.	1.3	1
26	Precision Measurement of Fractional Orbital Angular Momentum. Physical Review Applied, 2019, 12, .	1.5	44
27	Large-Range, Highly-Sensitive, and Fast-Responsive Optical Fiber Temperature Sensor Based on the Sealed Ethanol in Liquid State Up to its Supercritical Temperature. IEEE Photonics Journal, 2019, 11, 1-12.	1.0	9
28	Controllable rotation of multiplexing elliptic optical vortices. Journal Physics D: Applied Physics, 2019, 52, 495103.	1.3	19
29	Rotating Ag-Fe3O4-Au Nanograin by Optical Torque with a Monochromatic Light Beam. Plasmonics, 2019, 14, 1081-1089.	1.8	1
30	Wavelength and polarization multiplexed optical vortex demultiplexer. Journal Physics D: Applied Physics, 2019, 52, 375104.	1.3	4
31	Ultra-compact, fast-responsive and highly-sensitive humidity sensor based on a polymer micro-rod on the end-face of fiber core. Sensors and Actuators B: Chemical, 2019, 290, 23-27.	4.0	36
32	High-capacity spatial-division multiplexing with orbital angular momentum based on multi-ring fiber. Journal of Optics (United Kingdom), 2019, 21, 055601.	1.0	20
33	Information Encoding with Optical Dielectric Metasurface via Independent Multichannels. ACS Photonics, 2019, 6, 230-237.	3.2	57
34	High order perfect optical vortex shaping. Optics Communications, 2019, 435, 93-96.	1.0	12
35	Highly sensitive optical fiber temperature sensor based on the thermal shift of the liquid–air interface. Optical Engineering, 2019, 58, 1.	0.5	2
36	Ultracompact biosensor based on a metalens with a longitudinally structured vector beam. Applied Optics, 2019, 58, 4438.	0.9	6

#	Article	IF	CITATIONS
37	Vortex chirality-dependent filtering in helically twisted single-ring photonic crystal fibers. Optics Express, 2019, 27, 20816.	1.7	10
38	Simple fiber-optic sensor for simultaneous and sensitive measurement of high pressure and high temperature based on the silica capillary tube. Optics Express, 2019, 27, 25777.	1.7	35
39	Orbital angular momentum demultiplexing with synthetic partial aperture receivers. Optics Letters, 2019, 44, 2689.	1.7	10
40	Topological charge measurement of concentric OAM states using the phase-shift method. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, A40.	0.8	9
41	Perfect optical vortex array for optical communication based on orbital angular momentum shift keying. Journal of Optics (United Kingdom), 2018, 20, 125604.	1.0	23
42	Chiral optical field generated by an annular subzone vortex phase plate. Optics Letters, 2018, 43, 4594.	1.7	29
43	High numerical aperture multifocal metalens based on Pancharatnam–Berry phase optical elements. Applied Optics, 2018, 57, 7891.	0.9	18
44	Detection of multiplexing orbital angular momentum states by single objective. Optics Communications, 2018, 428, 84-88.	1.0	9
45	D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Applied Optics, 2018, 57, 5268.	0.9	133
46	HACF-based optical tweezers available for living cells manipulating and sterile transporting. Optics Communications, 2018, 427, 563-566.	1.0	14
47	All-fiber orbital angular momentum mode multiplexer based on a mode-selective photonic lantern and a mode polarization controller. Optics Letters, 2018, 43, 4779.	1.7	38
48	Metalens Focusing the Co-/cross-polarized Lights in Longitudinal Direction. Plasmonics, 2017, 12, 69-75.	1.8	5
49	High sensitivity fiber acoustic sensor tip working at 1550 nm fabricated by two-photon polymerization technique. Sensors and Actuators A: Physical, 2017, 260, 29-34.	2.0	20
50	Enhanced Forward Scattering of Ellipsoidal Dielectric Nanoparticles. Nanoscale Research Letters, 2017, 12, 58.	3.1	15
51	Fabrication of polymer compound microlens by lens-on-lens microstructures. Current Applied Physics, 2017, 17, 110-114.	1.1	4
52	High-sensitivity double-parameter sensor based on the fibre-tip Fabry–Pérot interferometer. Journal of Modern Optics, 2017, 64, 596-600.	0.6	17
53	Multifocal array with controllable orbital angular momentum modes by tight focusing. Optics Communications, 2017, 382, 559-564.	1.0	16
54	Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica, 2017, 4, 1368.	4.8	86

#	Article	IF	Citations
55	Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate. Optics Letters, 2017, 42, 3064.	1.7	5
56	Perfect vortex in three-dimensional multifocal array. Optics Express, 2016, 24, 28270.	1.7	66
57	Ultrasensitive liquid refractometer based on a Mach-Zehnder micro-cavity in optical fibre fabricated by femtosecond laser-induced water breakdown. Journal of Modern Optics, 2016, 63, 2285-2290.	0.6	10
58	Taper array in silica glass for beam splitting. Optical Materials, 2016, 53, 6-9.	1.7	1
59	Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity. Sensors and Actuators B: Chemical, 2016, 233, 496-501.	4.0	55
60	Excitation and separation of vortex modes in twisted air-core fiber. Optics Express, 2016, 24, 8310.	1.7	54
61	Effects of hydriding and ageing of Pd nanoparticles to contact between nanoparticles and quartz and contacts among nanoparticles investigated by the pump-probe technique. Chemical Physics Letters, 2016, 661, 191-195.	1.2	1
62	Polarization-independent characteristics of the metasurfaces with the symmetrical axis's orientation angle of 45° or 135°. Journal of Optics (United Kingdom), 2016, 18, 035007.	1.0	6
63	[INVITED] Ultrafast laser micro-processing of transparent material. Optics and Laser Technology, 2016, 78, 52-61.	2.2	78
64	Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles. Scientific Reports, 2015, 5, 12491.	1.6	44
65	Valence state change and defect centers induced by infrared femtosecond laser in Yb:YAG crystals. Journal of Applied Physics, 2015, 117, .	1.1	8
66	Sliver spherical nanoshells coated gain-assisted ellipsoidal silica core for low-threshold surface plasmon amplification. Optics Communications, 2015, 355, 580-585.	1.0	13
67	Polarization-independent longitudinal multi-focusing metalens. Optics Express, 2015, 23, 29855.	1.7	75
68	Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers. Journal of Optics (United) Tj ETQq0 0 0) rgBT /Ove	erlgck 10 Tf 50
69	Ultra-thin optical vortex phase plate based on the L-shaped nanoantenna for both linear and circular polarized incidences. Optics Communications, 2015, 355, 321-325.	1.0	14
70	Calculating the torque of the optical vortex tweezer to the ellipsoidal micro-particles. Optics Communications, 2015, 354, 34-39.	1.0	23
71	L-shaped metasurface for both the linear and circular polarization conversions. Journal of Optics (United Kingdom), 2015, 17, 065103.	1.0	12
72	Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation. Journal of Optics (United Kingdom), 2015, 17, 045102.	1.0	46

#	Article	IF	CITATIONS
73	Plasmonics metalens independent from the incident polarizations. Optics Express, 2015, 23, 16782.	1.7	51
74	Miniature ⊓-shaped polymer fiber tip for simultaneous measurement of the liquid refractive index and temperature with high sensitivities. Journal of Optics (United Kingdom), 2015, 17, 105701.	1.0	6
75	Fabrication of large-scale ripples on fluorine-doped tin oxide films by femtosecond laser irradiation. Chinese Physics B, 2014, 23, 094209.	0.7	1
76	Fiber-optic sensor tip for measuring temperature and liquid refractive index. Optical Engineering, 2014, 53, 116110.	0.5	16
77	Living cell manipulation in a microfluidic device by femtosecond optical tweezers. Optics and Lasers in Engineering, 2014, 55, 150-154.	2.0	26
78	Liquid refractive index sensor with three-cascaded microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown. Applied Physics B: Lasers and Optics, 2013, 110, 585-589.	1.1	9
79	Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips. Current Applied Physics, 2013, 13, 1292-1295.	1.1	30
80	Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Optics Letters, 2013, 38, 335.	1.7	47
81	Center searching and tracking of circular interference fringes for precision measurement. Optical Engineering, 2012, 51, 027003.	0.5	1
82	The effects of heat treatment on microfluidic devices fabricated in silica glass by femtosecond lasers. Chinese Physics B, 2012, 21, 034208.	0.7	9
83	Fabrication of microfluidic devices in silica glass by water-assisted ablation with femtosecond laser pulses. Journal of Micromechanics and Microengineering, 2011, 21, 075008.	1.5	25
84	Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array. Optics Letters, 2011, 36, 4236.	1.7	31
85	Fabrication of spiral-shaped microfluidic channels in glass by femtosecond laser. Materials Letters, 2010, 64, 1427-1429.	1.3	15
86	Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Optics Express, 2005, 13, 1855.	1.7	60
87	Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Optics Letters, 2001, 26, 1912.	1.7	249