Gilmar Pereira de Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2236563/publications.pdf

Version: 2024-02-01

29 papers 1,011 citations

567281 15 h-index 552781 26 g-index

29 all docs 29 docs citations

times ranked

29

1202 citing authors

#	Article	IF	Citations
1	Trinuclear Cobalt(II) Triple Helicate with a Multidentate Bithiazolebis(oxamate) Ligand as a Supramolecular Nanomagnet. Inorganic Chemistry, 2022, 61, 5696-5700.	4.0	4
2	Building-up host–guest helicate motifs and chains: a magneto-structural study of new field-induced cobalt-based single-ion magnets. Dalton Transactions, 2021, 50, 10707-10728.	3.3	6
3	Dinuclear copper(<scp>ii</scp>) complexes containing oxamate and blocking ligands: crystal structure, magnetic properties, and DFT calculations. New Journal of Chemistry, 2020, 44, 2597-2608.	2.8	6
4	Photoluminescence, thermal stability and structural properties of Eu3+, Dy3+ and Eu3+/Dy3+ doped apatite-type silicates. Journal of Luminescence, 2020, 227, 117500.	3.1	24
5	Dinuclear copper(II) complexes as testing ground for molecular magnetism theory. Polyhedron, 2019, 169, 66-77.	2.2	28
6	1D coordination polymer based on copper(II)-containing tetrameric 1,2,3-triazole ligand from click chemistry: Magnetic and catalytic properties. Inorganica Chimica Acta, 2019, 489, 93-99.	2.4	8
7	Pr $ ilde{A}_i$ ticas pedag $ ilde{A}^3$ gicas na educa $ ilde{A}$ § $ ilde{A}$ £o b $ ilde{A}_i$ sica: experi $ ilde{A}^a$ ncias formativas do PIBID-UFOP. , 2019, , .		O
8	PIBID UFOP em diálogo com a educação básica: percursos para a formação de professores. , 2019, , .		0
9	Magneto-structural correlations in asymmetric oxalato-bridged dicopper(II) complexes with polymethyl-substituted pyrazole ligands. Journal of Coordination Chemistry, 2018, 71, 657-674.	2.2	10
10	Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story. European Journal of Inorganic Chemistry, 2018, 2018, 228-247.	2.0	44
11	Synthesis, characterization and catalytic potential of MgNiO2 nanoparticles obtained from a novel [MgNi(opba)] ·9nH2O chain. Ceramics International, 2016, 42, 13635-13641.	4.8	9
12	A heterobimetallic [MnII5CuII5] nanowheel modulated by a flexible bis-oxamate type ligand. Dalton Transactions, 2015, 44, 10939-10942.	3.3	15
13	Metallosupramolecular approach toward multifunctional magnetic devices for molecular spintronics. Coordination Chemistry Reviews, 2015, 303, 110-138.	18.8	64
14	Influence of Copper(II) and Nickel(II) Ions in the Topology of Systems Based on a Flexible Bis-Oxamate and Bipyridine Building Blocks. Crystal Growth and Design, 2014, 14, 5929-5937.	3.0	14
15	Images, analogies, models and charge: different approaches in teaching chemistry involving the subject polymers. QuÃmica Nova Na Escola, 2014, 36, .	0.1	O
16	A Two-Dimensional Oxamate- and Oxalate-Bridged Cu ^{II} Mn ^{II} Motif: Crystal Structure and Magnetic Properties of (Bu ₄ N) ₂ [Mn ₂ {Cu(opba)} ₂ ox]. Inorganic Chemistry, 2013, 52, 8812-8819.	4.0	28
17	Solvent-driven dimensionality control in molecular systems containing Cull, 2,2′-bipyridine and an oxamato-based ligand. CrystEngComm, 2013, 15, 10165.	2.6	14
18	Copper(ii) assembling with bis(2-pyridylcarbonyl)amidate and N,N′-2,2-phenylenebis(oxamate). Dalton Transactions, 2013, 42, 5778.	3.3	35

#	Article	IF	CITATIONS
19	Dicopper(II) Metallacyclophanes with Electroswitchable Polymethylâ€Substituted <i>para</i> \$\frac{1}{2}\text{i}\$\text{\$\frac{1}{2}\$}\$\frac{1	3.3	25
20	Structural characterization of a new dioxamic acid derivative by experimental (FT-IR, NMR, and X-ray) analyses and theoretical (HF and DFT) investigations. Journal of Molecular Structure, 2012, 1016, 13-21.	3.6	11
21	Supramolecular coordination chemistry of aromatic polyoxalamide ligands: A metallosupramolecular approach toward functional magnetic materials. Coordination Chemistry Reviews, 2010, 254, 2281-2296.	18.8	178
22	Rational design of a new class of heterobimetallic molecule-based magnets: Synthesis, crystal structures, and magnetic properties of oxamato-bridged (M′=Lil and MnII; M=NiII and CoII) open-frameworks with a three-dimensional honeycomb architecture. Inorganica Chimica Acta, 2008, 361, 3394-3402.	2.4	49
23	Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective. Dalton Transactions, 2008, , 2780.	3.3	244
24	Antioxidant activity of (+)-bergenin—a phytoconstituent isolated from the bark of Sacoglottis uchi Huber (Humireaceae). Organic and Biomolecular Chemistry, 2008, 6, 2713.	2.8	48
25	Synthesis and density functional calculations of the new molecule-based magnet precursor [Fe(H2opba-i)(dmso)2]Cl. Journal of the Brazilian Chemical Society, 2006, 17, 1534-1539.	0.6	6
26	Chemistry and reactivity of dinuclear manganese oxamate complexes: Aerobic catechol oxidation catalyzed by high-valent bis(oxo)-bridged dimanganese(IV) complexes with a homologous series of binucleating 4,5-disubstituted-o-phenylenedioxamate ligands. Journal of Molecular Catalysis A, 2006, 250, 20-26.	4.8	44
27	Chemistry and reactivity of dinuclear iron oxamate complexes: alkane oxidation with hydrogen peroxide catalysed by an oxo-bridged diiron(III) complex with amide and carboxylate ligation. Inorganica Chimica Acta, 2004, 357, 2713-2720.	2.4	33
28	High coercivity in a new molecular iron-based magnet. Polyhedron, 2001, 20, 1431-1434.	2.2	3
29	Theoretical study of the exchange coupling in copper(II) binuclear compounds with oxamidate and related polyatomic bridging ligandsâ€Sâ€. Journal of the Chemical Society Dalton Transactions, 1999, , 1669-1676.	1.1	61