
Maria Elena Otegui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2236403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breeding effects on canopy light attenuation in maize: a retrospective and prospective analysis. Journal of Experimental Botany, 2022, 73, 1301-1311.	2.4	6
2	Row spacing and growth habit in peanut crops: Effects on seed yield determination across environments. Field Crops Research, 2022, 275, 108363.	2.3	5
3	Expressing the sunflower transcription factor HaHB11 in maize improves waterlogging and defoliation tolerance. Plant Physiology, 2022, 189, 230-247.	2.3	7
4	Maize genetic progress in the central Pampas of Argentina: effects of contrasting sowing dates. Field Crops Research, 2022, 281, 108492.	2.3	7
5	Genetically modified maize hybrids and delayed sowing reduced drought effects across a rainfall gradient in temperate Argentina. Journal of Experimental Botany, 2021, 72, 5180-5188.	2.4	19
6	Artificial selection for grain yield has increased net CO2 exchange of the ear leaf in maize crops. Journal of Experimental Botany, 2021, 72, 3902-3913.	2.4	17
7	Ability of in situ canopy spectroscopy to differentiate genotype by environment interaction in wheat. International Journal of Remote Sensing, 2021, 42, 3660-3680.	1.3	3
8	Kernel weight responses to the photothermal environment in maize dent × flint and flint × flint hybrids. Crop Science, 2021, 61, 1996-2011.	0.8	6
9	A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize. Plant Methods, 2021, 17, 60.	1.9	12
10	Kernel filling and desiccation in temperate maize: Breeding and environmental effects. Field Crops Research, 2021, 271, 108243.	2.3	8
11	Maize. , 2021, , 2-43.		4
12	Water and radiation use efficiencies in maize: Breeding effects on single-cross Argentine hybrids released between 1980 and 2012. Field Crops Research, 2020, 246, 107683.	2.3	41
13	Phenotypic plasticity for biomass partitioning in maize: genotype effects across a range of environments. Field Crops Research, 2020, 256, 107914.	2.3	6
14	Why are second-generation transgenic crops not yet available in the market?. Journal of Experimental Botany, 2020, 71, 6876-6880.	2.4	13
15	An Interdisciplinary Approach to Study the Performance of Second-generation Genetically Modified Crops in Field Trials: A Case Study With Soybean and Wheat Carrying the Sunflower HaHB4 Transcription Factor. Frontiers in Plant Science, 2020, 11, 178.	1.7	26
16	Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4. Journal of Experimental Botany, 2020, 71, 3142-3156.	2.4	41
17	Heterosis and parent–progeny relationships for silk extrusion dynamics and kernel number determination in maize: Nitrogen effects. Crop Science, 2020, 60, 961-976.	0.8	10
18	Maize expressing the sunflower transcription factor HaHB11 has improved productivity in controlled and field conditions. Plant Science, 2019, 287, 110185.	1.7	9

MARIA ELENA OTEGUI

#	Article	IF	CITATIONS
19	Phenotypic plasticity of maize grain yield and related secondary traits: Differences between inbreds and hybrids in response to contrasting water and nitrogen regimes. Field Crops Research, 2019, 239, 19-29.	2.3	13
20	Field-grown transgenic wheat expressing the sunflower gene <i>HaHB4</i> significantly outyields the wild type. Journal of Experimental Botany, 2019, 70, 1669-1681.	2.4	78
21	Source-sink relations and kernel weight in maize inbred lines and hybrids: Responses to contrasting nitrogen supply levels. Field Crops Research, 2019, 230, 151-159.	2.3	43
22	Reduced expression of selected <scp><i>FASCICLINâ€LIKE ARABINOGALACTAN PROTEIN</i></scp> genes associates with the abortion of kernels in field crops of <scp><i>Zea mays</i></scp> (maize) and of <scp>A</scp> rabidopsis seeds. Plant, Cell and Environment, 2018, 41, 661-674.	2.8	38
23	Contribution of the early-established plant hierarchies to maize crop responses to N fertilization. Field Crops Research, 2018, 216, 141-149.	2.3	9
24	Physiological Bases of Acrossâ€Environment and Environmentâ€5pecific Responses for Grain Yield in Maize Hybrids Obtained from a Full Diallel Mating Design. Crop Science, 2018, 58, 180-191.	0.8	3
25	Genetic improvement of peanut in Argentina between 1948 and 2004: Light interception, biomass production and radiation use efficiency. Field Crops Research, 2017, 204, 222-228.	2.3	12
26	Modeling the response of maize phenology, kernel set, and yield components to heat stress and heat shock with CSM-IXIM. Field Crops Research, 2017, 214, 239-254.	2.3	21
27	A role for LAX2 in regulating xylem development and lateral-vein symmetry in the leaf. Annals of Botany, 2017, 120, 577-590.	1.4	33
28	Contribution of Reserves to Kernel Weight and Grain Yield Determination in Maize: Phenotypic and Genotypic Variation. Crop Science, 2016, 56, 697-706.	0.8	18
29	Modelling the impact of heat stress on maize yield formation. Field Crops Research, 2016, 198, 226-237.	2.3	72
30	Multiple abiotic stresses on maize grain yield determination: Additive vs multiplicative effects. Field Crops Research, 2016, 198, 280-289.	2.3	28
31	Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. Journal of Biotechnology, 2016, 220, 66-77.	1.9	46
32	Genetic improvement of peanut in Argentina between 1948 and 2004: Links between phenology and grain yield determinants. Field Crops Research, 2015, 174, 12-19.	2.3	10
33	Crop phenotyping for physiological breeding in grain crops: A case study for maize. , 2015, , 375-396.		3
34	Heat stress in temperate and tropical maize hybrids: Kernel growth, water relations and assimilate availability for grain filling. Field Crops Research, 2014, 166, 162-172.	2.3	61
35	Genetic improvement of peanut in Argentina between 1948 and 2004: Seed yield and its components. Field Crops Research, 2013, 149, 76-83.	2.3	15
36	Heat stress in temperate and tropical maize hybrids: A novel approach for assessing sources of kernel loss in field conditions. Field Crops Research, 2013, 142, 58-67.	2.3	50

Maria Elena Otegui

#	Article	IF	CITATIONS
37	Maize Physiological Responses to Heat Stress and Hormonal Plant Growth Regulators Related to Ethylene Metabolism. Crop Science, 2013, 53, 2135-2146.	0.8	20
38	Correlations Between Parental Inbred Lines and Derived Hybrid Performance for Grain Filling Traits in Maize. Crop Science, 2013, 53, 1636-1645.	0.8	17
39	Parent–Progeny Relationships between Maize Inbreds and Hybrids: Analysis of Grain Yield and Its Determinants for Contrasting Soil Nitrogen Conditions. Crop Science, 2013, 53, 2147-2161.	0.8	25
40	Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use. Field Crops Research, 2012, 130, 87-98.	2.3	109
41	Inter-plant variability in maize crops grown under contrasting N×stand density combinations: Links between development, growth and kernel set. Field Crops Research, 2012, 133, 90-100.	2.3	40
42	Peg viability and pod set in peanut: Response to impaired pegging and water deficit. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 865-871.	0.6	10
43	Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops Research, 2011, 121, 373-380.	2.3	122
44	Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 2011, 123, 62-73.	2.3	134
45	Heterosis×environment interaction in maize: What drives heterosis for grain yield?. Field Crops Research, 2011, 124, 441-449.	2.3	25
46	Heterotic Response for Grain Yield and Ecophysiological Related Traits to Nitrogen Availability in Maize. Crop Science, 2011, 51, 1172-1187.	0.8	25
47	Heat Stress during Late Vegetative Growth of Maize: Effects on Phenology and Assessment of Optimum Temperature. Crop Science, 2010, 50, 1431-1437.	0.8	55
48	Heat Stress in Fieldâ€Grown Maize: Response of Physiological Determinants of Grain Yield. Crop Science, 2010, 50, 1438-1448.	0.8	123
49	Water deficit and impaired pegging effects on peanut seed yield: links with water and photosynthetically active radiation use efficiencies. Crop and Pasture Science, 2010, 61, 343.	0.7	11
50	Ecophysiological traits in maize hybrids and their parental inbred lines: Phenotyping of responses to contrasting nitrogen supply levels. Field Crops Research, 2009, 114, 147-158.	2.3	43
51	Multi-attribute responses of maize inbred lines across managed environments. Euphytica, 2008, 162, 381-394.	0.6	18
52	Kernel weight dependence upon plant growth at different grain-filling stages in maize and sorghum. Australian Journal of Agricultural Research, 2008, 59, 280.	1.5	63
53	Enhanced kernel set promoted by synchronous pollination determines a tradeoff between kernel number and kernel weight in temperate maize hybrids. Field Crops Research, 2008, 105, 172-181.	2.3	28
54	Kernel number determination differs among maize hybrids in response to nitrogen. Field Crops Research, 2008, 105, 228-239.	2.3	123

Maria Elena Otegui

#	Article	IF	CITATIONS
55	Seed yield determination of peanut crops under water deficit: Soil strength effects on pod set, the source–sink ratio and radiation use efficiency. Field Crops Research, 2008, 109, 24-33.	2.3	35
56	Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Research, 2007, 101, 1-9.	2.3	103
57	Intra-specific competition in maize: Ear development, flowering dynamics and kernel set of early-established plant hierarchies. Field Crops Research, 2007, 102, 198-209.	2.3	42
58	Environmental effects on seed yield determination of irrigated peanut crops: Links with radiation use efficiency and crop growth rate. Field Crops Research, 2007, 103, 217-228.	2.3	29
59	Ovary Growth and Maize Kernel Set. Crop Science, 2007, 47, 1104-1110.	0.8	33
60	Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crops Research, 2006, 95, 316-326.	2.3	138
61	Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Research, 2006, 95, 383-397.	2.3	146
62	Intra-specific competition in maize: Contribution of extreme plant hierarchies to grain yield, grain yield yield yield components and kernel composition. Field Crops Research, 2006, 97, 155-166.	2.3	81
63	Genotypic Variability in Morphological and Physiological Traits among Maize Inbred Lines-Nitrogen Responses. Crop Science, 2006, 46, 1266-1276.	0.8	61
64	Row Width and Maize Grain Yield. Agronomy Journal, 2006, 98, 1532-1543.	0.9	77
65	Co-ordination between Leaf Initiation and Leaf Appearance in Field-grown Maize (Zea mays): Genotypic Differences in Response of Rates to Temperature. Annals of Botany, 2005, 96, 997-1007.	1.4	50
66	Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 2004, 86, 131-146.	2.3	667
67	Intra-specific competition in maize: early establishment of hierarchies among plants affects final kernel set. Field Crops Research, 2004, 85, 1-13.	2.3	140
68	Control of Kernel Weight and Kernel Water Relations by Post-flowering Source-sink Ratio in Maize. Annals of Botany, 2003, 91, 857-867.	1.4	143
69	Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Research, 2003, 82, 13-26.	2.3	175
70	Maize Leaves Turn Away from Neighbors. Plant Physiology, 2002, 130, 1181-1189.	2.3	142
71	Maize Kernel Composition and Postâ€Flowering Sourceâ€Sink Ratio. Crop Science, 2002, 42, 781-790.	0.8	59
72	Pollen Production, Pollination Dynamics, and Kernel Set in Maize. Crop Science, 2002, 42, 1910-1918.	0.8	102

MARIA ELENA OTEGUI

#	Article	IF	CITATIONS
73	Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 2001, 71, 183-193.	2.3	234
74	Maize Kernel Weight Response to Postflowering Source–Sink Ratio. Crop Science, 2001, 41, 1816-1822.	0.8	159
75	Ear Temperature and Pollination Timing Effects on Maize Kernel Set. Crop Science, 2001, 41, 1809-1815.	0.8	77
76	Synchronous Pollination within and between Ears Improves Kernel Set in Maize. Crop Science, 2000, 40, 1056-1061.	0.8	98
77	Intercepted Radiation at Flowering and Kernel Number in Maize. Agronomy Journal, 2000, 92, 92-97.	0.9	73
78	Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993. Field Crops Research, 2000, 68, 1-8.	2.3	143
79	Grain yield components in maize. Field Crops Research, 1998, 56, 247-256.	2.3	147
80	Grain yield components in maize. Field Crops Research, 1998, 56, 257-264.	2.3	69
81	Kernel Set and Flower Synchrony within the Ear of Maize : II. Plant Population Effects. Crop Science, 1997, 37, 448-455.	0.8	76
82	Kernel Set and Flower Synchrony within the Ear of Maize : I. Sowing Date Effects. Crop Science, 1997, 37, 441-447.	0.8	53
83	Modeling hybrid and sowing date effects on potential grain yield of maize in a humid temperate region. Field Crops Research, 1996, 47, 167-174.	2.3	59
84	Leaf area, light interception, and crop development in maize. Field Crops Research, 1996, 48, 81-87.	2.3	134
85	Sowing Date Effects on Grain Yield Components for Different Maize Genotypes. Agronomy Journal, 1995, 87, 29-33.	0.9	100
86	Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Research, 1995, 40, 87-94.	2.3	202
87	New Relationships Between Light Interception, Ear Growth, and Kernel Set in Maize. CSSA Special Publication - Crop Science Society of America, 0, , 89-102.	0.1	15