
Oleksandr V Reshetnyak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2236359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical synthesis and application of palladium nanoparticles. Journal of Materials Science, 2015, 50, 2337-2354.	3.7	158
2	Co-polymers of aniline and nitroanilines. Part I. Mechanism of aniline oxidation polycondensation. Materials Chemistry and Physics, 2001, 69, 154-162.	4.0	46
3	The origin of luminescence accompanying electrochemical reduction or chemical decomposition of peroxydisulfates. Journal of Luminescence, 2003, 105, 27-34.	3.1	44
4	A possible scheme of electrochemiluminescence generation on platinum cathodes in aqueous solutions of peroxydisulfates. Electrochimica Acta, 1998, 43, 465-469.	5.2	37
5	Electrochemical synthesis and properties of gold nanomaterials. Journal of Solid State Electrochemistry, 2018, 22, 637-656.	2.5	37
6	Synthesis and properties of the polyanisidines. Solid State Ionics, 2001, 141-142, 217-224.	2.7	29
7	Origin and features of the electrochemiluminescence of luminol – Experimental and theoretical investigations. Journal of Electroanalytical Chemistry, 2005, 580, 41-49.	3.8	29
8	Electrochemiluminescence on np1-metals. Electrochimica Acta, 1999, 44, 4079-4086.	5.2	27
9	Structure and properties of lithium trivanadate—a potential electroactive material for a positive electrode of secondary storage. Journal of Power Sources, 2002, 107, 61-66.	7.8	20
10	Controlled gold deposition by pulse electrolysis. Materials Letters, 2015, 139, 296-299.	2.6	20
11	Thermodynamic properties of saturated solid solutions of Ag7SnSe5Br and Ag8SnSe6 compounds in the Ag–Sn–Se–Br system measured by the EMF method. Journal of Chemical Thermodynamics, 2017, 106, 228-231.	2.0	19
12	Oxidative condensation and chemiluminescence of 5-amino-2,3-dihydro-1,4-phtalazinedione. European Polymer Journal, 2005, 41, 1315-1325.	5.4	17
13	Electrochemical determination of thermodynamic properties of saturated solid solutions of Hg2GeSe3, Hg2GeSe4, Ag2Hg3GeSe6, and Ag1.4Hg1.3GeSe6 compounds in the Ag–Hg–Ge–Se system. Journal of Solid State Electrochemistry, 2017, 21, 833-837.	2.5	16
14	Determination of the thermodynamic properties of the Ag2CdSn3S8 and Ag2CdSnS4 phases in the Ag–Cd–Sn–S system by the solid-state electrochemical cell method. Journal of Chemical Thermodynamics, 2018, 118, 255-262.	2.0	16
15	Electrocatalytic activity of Pd–Au nanoalloys during methanol oxidation reaction. International Journal of Hydrogen Energy, 2020, 45, 4444-4456.	7.1	16
16	Characterization of polyaniline thin films prepared on polyethylene terephthalate substrate. Polymer Bulletin, 2021, 78, 6251-6265.	3.3	16
17	Copolymers of aniline and nitroanilines. Materials Chemistry and Physics, 2001, 70, 38-48.	4.0	13
18	Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag2PbGeS4, Ag0.5Pb1.75GeS4 and Ag6.72Pb0.16Ge0.84S5.20 of the Ag-Pb-Ge-S System Determined by EMF Method. Journal of Phase Equilibria and Diffusion, 2017, 38, 426-433.	1.4	13

Oleksandr V Reshetnyak

#	Article	IF	CITATIONS
19	Nucleation and growth of Au and Au–Pd nanoparticles at the beginning of electrochemical deposition. Materials Letters, 2015, 161, 263-266.	2.6	12
20	Mechanism of the benzenediazonium tetrafluoroborate thermolysis in the solid state. Thermochimica Acta, 2006, 444, 1-5.	2.7	11
21	Galvanic Deposition of Gold and Palladium on Magnesium by the Method of Substitution. Materials Science, 2015, 51, 418-423.	0.9	10
22	Solid-state electrochemical synthesis and thermodynamic properties of selected compounds in the Ag–Fe–Pb–Se system. Solid State Sciences, 2020, 107, 106344.	3.2	10
23	Phase Equilibria and Thermodynamics of Selected Compounds in the Ag–Fe–Sn–S System. Journal of Electronic Materials, 2018, 47, 5433-5442.	2.2	9
24	Electromagnetic radiation during electrolysis of heavy water. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 189, 15-18.	2.1	7
25	Surface modification of silver microparticles with 4-thioaniline. Electrochimica Acta, 2010, 55, 5154-5162.	5.2	7
26	Non-activation synthesis and thermodynamic properties of ternary compounds of the Ag–Te–Br system. Thermochimica Acta, 2021, 698, 178862.	2.7	7
27	Properties of the Hybrid Glauconite/Polyaniline Composites Synthesized in the Aqueous Citrate Acid Solutions. Chemistry and Chemical Technology, 2016, 10, 429-435.	1.1	7
28	Spectral features of electrochemiluminescence accompanying reduction of aryldiazonium salts on a copper cathode. Electrochemistry Communications, 2001, 3, 1-5.	4.7	6
29	Nanostructured gold–palladium electrodeposited in dimethyl sulfoxide solutions. Materials Letters, 2015, 158, 317-321.	2.6	6
30	Deposition of Copper, Silver, and Nickel on Aluminum by Galvanic Replacement. Materials Science, 2018, 53, 488-494.	0.9	6
31	The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System. Energies, 2021, 14, 1314.	3.1	6
32	Role of molecular oxygen and its active forms in generation of electrochemiluminescence. Russian Journal of Electrochemistry, 2011, 47, 1111-1118.	0.9	5
33	Thermodynamic Properties of AgIn2Te3I and AgIn2Te3Br, Determined by EMF Method. Russian Journal of Physical Chemistry A, 2018, 92, 19-23.	0.6	5
34	Properties of Glauconite/Polyaniline Composite Prepared in Aqueous Solution of Citric Acid. Journal of Polymers and the Environment, 2016, 24, 196-205.	5.0	4
35	Thermodynamic Properties of Magnetic Semiconductors Ag2FeSn3S8 and Ag2FeSnS4 Determined by the EMF Method. Minerals, Metals and Materials Series, 2018, , 87-98.	0.4	3
36	Synthesis and Thermodynamic Investigation of Energy Materials in the Ag-Te-Cl System by the Solid-State Galvanic Cells. Jom, 2021, 73, 1487-1494.	1.9	3

#	Article	IF	CITATIONS
37	ELECTROCHEMICAL PROPERTIES OF THE COMPOSITES SYNTHESIZED FROM POLYANILINE AND MODIFIED MWCNT. Chemistry and Chemical Technology, 2017, 11, 261-269.	1.1	3
38	Thermal Stability and Thermodynamics of the Ag2ZnGeS4 Compound. Minerals, Metals and Materials Series, 2019, , 215-226.	0.4	2
39	ELECTROCHEMISTRY OF FUNCTIONAL MATERIALS AND SYSTEMS (EFMS). Ukrainian Chemistry Journal, 2021, 87, 61-76.	0.5	2
40	Hybrid Mineral-Polymeric Composite Materials on the Basis of the Polyaniline and Glauconite-Silica. Chemistry and Chemical Technology, 2013, 7, 441-444.	1.1	2
41	Physical Sorption of Molecular Hydrogen by Microporous Organic Polymers. Chemistry and Chemical Technology, 2019, 13, 85-94.	1.1	2
42	Fluorine-containing polyamphiphiles of block structure constructed of synthetic and biopolymer blocks. Biopolymers and Cell, 2018, 34, 207-217.	0.4	2
43	THERMODYNAMIC PROPERTIES OF SILVER-CONTAINING COMPOUNDS OF THE Ag–Fe–Sn–S SYSTEM OBTAINED BY LOW-TEMPERATURE SOLID-STATE SYNTHESIS. Ukrainian Chemistry Journal, 2020, 86, 34-50.	0.5	2
44	Reaction of metals with benzenediazonium tetrafluoroborate in aprotic solvents. Open Chemistry, 2010, 8, 652-661.	1.9	1
45	Calculation of thermodynamic functions of saturated solid solution of AgIn2Te3I compound in the Ag–In–Te–I system. EPJ Web of Conferences, 2017, 133, 04002.	0.3	1
46	Thermodynamic study of phase equilibrium of superionic alloys of Ag3SBr1â^'xClx system in the concentration range 0.0–0.4 and temperature range 370–395 K. Archives of Thermodynamics, 2017, 38, 27-38.	1.0	1
47	Thermodynamic Properties of Superionic Phase Ag4HgSe2I2 Determined by the EMF Method. Journal of Phase Equilibria and Diffusion, 2018, 39, 11-16.	1.4	1
48	The Fast Silver Ion Conducting Solid-State Electrolytes for Deriving Thermodynamic Data. , 0, , .		1
49	Thermodynamic Examination of Quaternary Compounds in the Ag–Fe–(Ge, Sn)–Se Systems by the Solid-State EMF Method. Minerals, Metals and Materials Series, 2021, , 271-283.	0.4	1
50	Thermodynamic Properties of Layered Tetradymite-like Compounds of the Ag–Ge–Sb–Te System. Minerals, Metals and Materials Series, 2020, , 275-287.	0.4	1
51	COMPOSITE MATERIALS BASED ON POLYANILINE AND NATURAL MINERALS: SHORT REVIEW. 1. FEATURES OF SYNTHESIS, PROPERTIES AND APPLICATIONS. Proceedings of the Shevchenko Scientific Society Series Đ¡hemical Sciences, 2018, 2018, 92-131.	0.1	1
52	Properties of the Composites Made of Glauconite and Polyaniline in Aqueous Solutions of Phosphoric Acid. Chemistry and Chemical Technology, 2020, 14, 487-495.	1.1	1
53	SYNTHESIS OF THE ZEOLITE/POLYANILINE COMPOSITES AND THEIR APPLICATION FOR THE DISPOSAL OF Cr(VI) FROM WATER SOLUTIONS. Proceedings of the Shevchenko Scientific Society Series Đjhemical Sciences, 2019, 2019, 130-143.	0.1	0
54	PROFESSOR EUGEN KOVAL'CHUK AND SCIENTIFIC SCHOOL "PHYSICO-CHEMISTRY OF POLYMERS": 2019 – YEAR OF TWO ANNIVERSARIES. Proceedings of the Shevchenko Scientific Society Series Đ¡hemical Sciences, 2019, 2019, 178-190.	' THE 0.1	0

#	Article	IF	CITATIONS
55	Synthesis and Electrochemical Properties of Polyaniline Composites. , 2020, , .		0