Liqun Luo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/223625/liqun-luo-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

179	22,807	75	150
papers	citations	h-index	g-index
213 ext. papers	28,741 ext. citations	22.3 avg, IF	7.24 L-index

#	Paper	IF	Citations
179	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly <i>Science</i> , 2022 , 375, eabk2432	33.3	23
178	Mating-driven variability in olfactory local interneuron wiring Science Advances, 2022, 8, eabm7723	14.3	0
177	Isolation and RNA sequencing of single nuclei from Drosophila tissues. STAR Protocols, 2022, 3, 101417	1.4	1
176	Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. <i>Cell Reports</i> , 2021 , 35, 109123	10.6	2
175	A genome-wide library of MADM mice for single-cell genetic mosaic analysis. <i>Cell Reports</i> , 2021 , 35, 109	2:7646	9
174	The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
173	Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks. <i>Science</i> , 2021 , 372, 1068-1073	33.3	7
172	Gut cytokines modulate olfaction through metabolic reprogramming of glia. <i>Nature</i> , 2021 , 596, 97-102	50.4	7
171	A neural circuit state change underlying skilled movements. <i>Cell</i> , 2021 , 184, 3731-3747.e21	56.2	8
170	GluD2- and Cbln1-mediated competitive interactions shape the dendritic arbors of cerebellar Purkinje cells. <i>Neuron</i> , 2021 , 109, 629-644.e8	13.9	9
169	Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. <i>Cell</i> , 2021 , 184, 489-506.e26	56.2	11
168	Temporal evolution of single-cell transcriptomes of olfactory projection neurons. ELife, 2021, 10,	8.9	11
167	Single-cell transcriptomes of developing and adult olfactory receptor neurons in. <i>ELife</i> , 2021 , 10,	8.9	24
166	Teneurins. Current Biology, 2021 , 31, R936-R937	6.3	1
165	Architectures of neuronal circuits. <i>Science</i> , 2021 , 373, eabg7285	33.3	15
164	Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging. <i>Cell</i> , 2021 , 184, 5107-5121.e14	56.2	5
163	Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11068-11075	5 ^{11.5}	22

162	The Temporal Association Cortex Plays a Key Role in Auditory-Driven Maternal Plasticity. <i>Neuron</i> , 2020 , 107, 566-579.e7	13.9	24
161	Brain Circuit of Claustrophobia-like Behavior in Mice Identified by Upstream Tracing of Sighing. <i>Cell Reports</i> , 2020 , 31, 107779	10.6	9
160	Nurturing Undergraduate Researchers in Biomedical Sciences. <i>Cell</i> , 2020 , 182, 1-4	56.2	79
159	Skilled reaching tasks for head-fixed mice using a robotic manipulandum. <i>Nature Protocols</i> , 2020 , 15, 1237-1254	18.8	7
158	Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. <i>Current Biology</i> , 2020 , 30, 1189-1198.e5	6.3	21
157	Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. <i>Cell</i> , 2020 , 180, 373-386.e	15 6.2	52
156	Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science, 2020, 370,	33.3	43
155	LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. <i>ELife</i> , 2020 , 9,	8.9	2
154	Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. <i>ELife</i> , 2020 , 9,	8.9	10
153	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. <i>Neuron</i> , 2020 , 106, 37-65.e5	13.9	43
152	Neocortex-Cerebellum Circuits for Cognitive Processing. <i>Trends in Neurosciences</i> , 2020 , 43, 42-54	13.3	44
151	The Mind of a Mouse. <i>Cell</i> , 2020 , 182, 1372-1376	56.2	49
150	Deep posteromedial cortical rhythm in dissociation. <i>Nature</i> , 2020 , 586, 87-94	50.4	50
149	Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 10055-10066	11.5	14
148	Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. <i>Neuron</i> , 2020 , 106, 1026-7	1 043 je	925
147	Temporal evolution of cortical ensembles promoting remote memory retrieval. <i>Nature Neuroscience</i> , 2019 , 22, 460-469	25.5	118
146	Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a Motor Task. <i>Cell</i> , 2019 , 177, 669	9-5682.6	264 ₃
145	Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 160) 6 8-56	073

144	Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. <i>Science</i> , 2019 , 364, 253	33.3	118
143	Ephrin-B3 controls excitatory synapse density through cell-cell competition for EphBs. <i>ELife</i> , 2019 , 8,	8.9	6
142	Functional divergence of Plexin B structural motifs in distinct steps of olfactory circuit assembly. <i>ELife</i> , 2019 , 8,	8.9	3
141	Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. <i>ELife</i> , 2019 , 8,	8.9	71
140	Author response: Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei 2019 ,		4
139	Complementary Genetic Targeting and Monosynaptic Input Mapping Reveal Recruitment and Refinement of Distributed Corticostriatal Ensembles by Cocaine. <i>Neuron</i> , 2019 , 104, 916-930.e5	13.9	18
138	Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations. <i>Cell Reports</i> , 2019 , 26, 159-167.e6	10.6	38
137	Suppressing Memories by Shrinking the Vesicle Pool. <i>Neuron</i> , 2019 , 101, 5-7	13.9	
136	Genetic tagging of active neurons in auditory cortex reveals maternal plasticity of coding ultrasonic vocalizations. <i>Nature Communications</i> , 2018 , 9, 871	17.4	22
135	Genetic Dissection of Neural Circuits: A Decade of Progress. <i>Neuron</i> , 2018 , 98, 256-281	13.9	203
134	Functional circuit architecture underlying parental behaviour. <i>Nature</i> , 2018 , 556, 326-331	50.4	163
133	A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia. <i>Neuron</i> , 2018 , 97, 787-795	5 .∉§ .9	62
132	Teneurin-3 controls topographic circuit assembly in the hippocampus. <i>Nature</i> , 2018 , 554, 328-333	50.4	72
131	Linking neuronal lineage and wiring specificity. <i>Neural Development</i> , 2018 , 13, 5	3.9	25
130	Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. <i>Cell</i> , 2018 , 175, 472-487.e20	56.2	143
129	Stepwise wiring of the olfactory map requires specific Plexin B levels. <i>ELife</i> , 2018 , 7,	8.9	10
128	Mapping Histological Slice Sequences to the Allen Mouse Brain Atlas Without 3D Reconstruction. <i>Frontiers in Neuroinformatics</i> , 2018 , 12, 93	3.9	13
127	Early adolescent Rai1 reactivation reverses transcriptional and social interaction deficits in a mouse model of Smith-Magenis syndrome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 10744-10749	11.5	17

(2016-2018)

126	Dynamic salience processing in paraventricular thalamus gates associative learning. <i>Science</i> , 2018 , 362, 423-429	33.3	75
125	A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. <i>Neuron</i> , 2017 , 93, 822-839.e6	13.9	152
124	Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. <i>Neuron</i> , 2017 , 94, 891-907.e6	13.9	181
123	Identification of preoptic sleep neurons using retrograde labelling and gene profiling. <i>Nature</i> , 2017 , 545, 477-481	50.4	163
122	Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. <i>Science</i> , 2017 , 356, 722-726	33.3	88
121	Genetic strategies to access activated neurons. Current Opinion in Neurobiology, 2017 , 45, 121-129	7.6	72
120	Breathing control center neurons that promote arousal in mice. <i>Science</i> , 2017 , 355, 1411-1415	33.3	117
119	Cerebellar granule cells encode the expectation of reward. <i>Nature</i> , 2017 , 544, 96-100	50.4	262
118	Gating of social reward by oxytocin in the ventral tegmental area. Science, 2017, 357, 1406-1411	33.3	238
117	Rabies screen reveals GPe control of cocaine-triggered plasticity. <i>Nature</i> , 2017 , 549, 345-350	50.4	39
116	Thirst-associated preoptic neurons encode an aversive motivational drive. <i>Science</i> , 2017 , 357, 1149-115	5533.3	135
115	Neurobiology: A bitter-sweet symphony. <i>Nature</i> , 2017 , 548, 285-287	50.4	О
114	The MutAnts Are Here. <i>Cell</i> , 2017 , 170, 601-602	56.2	4
113	Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing. <i>Cell</i> , 2017 , 171, 1206-1220.e22	56.2	150
112	Fibroblast growth factor signaling instructs ensheathing glia wrapping of olfactory glomeruli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7505-7512	11.5	26
111	Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. <i>ELife</i> , 2017 , 6,	8.9	31
110	Developmental Sculpting of Intracortical Circuits by MHC Class I H2-Db and H2-Kb. <i>Cerebral Cortex</i> , 2016 , 26, 1453-1463	5.1	21
109	Cas9-triggered chain ablation of cas9 as a gene drive brake. <i>Nature Biotechnology</i> , 2016 , 34, 137-8	44.5	44

108	Cell type-specific long-range connections of basal forebrain circuit. <i>ELife</i> , 2016 , 5,	8.9	58
107	Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. <i>Cell</i> , 2016 , 165, 1776-1788	56.2	194
106	Molecular and Neural Functions of Rai1, the Causal Gene for Smith-Magenis Syndrome. <i>Neuron</i> , 2016 , 92, 392-406	13.9	28
105	Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. <i>Neuron</i> , 2015 , 85, 429-38	13.9	220
104	Intersectional illumination of neural circuit function. <i>Neuron</i> , 2015 , 85, 889-92	13.9	8
103	Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. <i>Neuron</i> , 2015 , 85, 1013-28	13.9	63
102	Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. <i>Cell</i> , 2015 , 162, 635-47	56.2	379
101	Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. <i>Cell</i> , 2015 , 162, 622-34	56.2	481
100	Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. <i>Nature</i> , 2015 , 524, 88-92	50.4	397
99	Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses. <i>Journal of Neuroscience</i> , 2015 , 35, 8979-85	6.6	243
98	Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. <i>Nature Communications</i> , 2015 , 6, 6768	17.4	103
97	A transcriptional reporter of intracellular Ca(2+) in Drosophila. <i>Nature Neuroscience</i> , 2015 , 18, 917-25	25.5	51
96	NEUROSCIENCE. It takes the world to understand the brain. <i>Science</i> , 2015 , 350, 42-4	33.3	28
95	Control of REM sleep by ventral medulla GABAergic neurons. <i>Nature</i> , 2015 , 526, 435-8	50.4	168
94	Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing. <i>Nature Neuroscience</i> , 2015 , 18, 1687-1697	25.5	102
93	Basal forebrain circuit for sleep-wake control. <i>Nature Neuroscience</i> , 2015 , 18, 1641-7	25.5	257
92	Organization of the locus coeruleus-norepinephrine system. <i>Current Biology</i> , 2015 , 25, R1051-R1056	6.3	230
91	Improved and expanded Q-system reagents for genetic manipulations. <i>Nature Methods</i> , 2015 , 12, 219-22, 5 p following 222	21.6	102

(2013-2015)

90	Extremely sparse olfactory inputs are sufficient to mediate innate aversion in Drosophila. <i>PLoS ONE</i> , 2015 , 10, e0125986	3.7	13
89	Drosophila Strip serves as a platform for early endosome organization during axon elongation. <i>Nature Communications</i> , 2014 , 5, 5180	17.4	20
88	Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. <i>Neuron</i> , 2014 , 83, 645-62	13.9	203
87	Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. <i>Science</i> , 2014 , 345, 660-5	33.3	465
86	Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 8850-5	11.5	165
85	Mosaic analysis with double markers (MADM) in mice. Cold Spring Harbor Protocols, 2014, 2014, 182-9	1.2	6
84	A molecular basis for classic blond hair color in Europeans. <i>Nature Genetics</i> , 2014 , 46, 748-52	36.3	122
83	Functional transformations of odor inputs in the mouse olfactory bulb. <i>Frontiers in Neural Circuits</i> , 2014 , 8, 129	3.5	21
82	Deterministic progenitor behavior and unitary production of neurons in the neocortex. <i>Cell</i> , 2014 , 159, 775-88	56.2	250
81	Neurodevelopment. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. <i>Science</i> , 2014 , 346, 626-9	33.3	69
8o	Genetic control of wiring specificity in the fly olfactory system. <i>Genetics</i> , 2014 , 196, 17-29	4	71
79	Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. <i>ELife</i> , 2014 , 3, e03726	8.9	63
78	Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. <i>Cell Reports</i> , 2013 , 3, 960-7	10.6	37
77	Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. <i>Neuron</i> , 2013 , 80, 1232-45	13.9	200
76	Linking cell fate, trajectory choice, and target selection: genetic analysis of Sema-2b in olfactory axon targeting. <i>Neuron</i> , 2013 , 78, 673-86	13.9	45
75	GABAergic projection neurons route selective olfactory inputs to specific higher-order neurons. <i>Neuron</i> , 2013 , 79, 917-31	13.9	80
74	Meigo governs dendrite targeting specificity by modulating ephrin level and N-glycosylation. <i>Nature Neuroscience</i> , 2013 , 16, 683-91	25.5	23
73	Specific kinematics and motor-related neurons for aversive chemotaxis in Drosophila. <i>Current Biology</i> , 2013 , 23, 1163-72	6.3	23

72	Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. <i>Neuron</i> , 2013 , 78, 773-84	13.9	296
71	Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice. <i>Nature</i> , 2012 , 484, 237-41	50.4	148
70	Kv1.1-dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. <i>Journal of Physiology</i> , 2012 , 590, 2645-58	3.9	8
69	Extensions of MADM (mosaic analysis with double markers) in mice. <i>PLoS ONE</i> , 2012 , 7, e33332	3.7	41
68	Teneurins instruct synaptic partner matching in an olfactory map. <i>Nature</i> , 2012 , 484, 201-7	50.4	168
67	The SUMO protease Verloren regulates dendrite and axon targeting in olfactory projection neurons. <i>Journal of Neuroscience</i> , 2012 , 32, 8331-40	6.6	16
66	Mosaic analysis with double markers reveals tumor cell of origin in glioma. <i>Cell</i> , 2011 , 146, 209-21	56.2	461
65	A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. <i>Neuron</i> , 2011 , 70, 281-98	13.9	72
64	Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. <i>Neuron</i> , 2011 , 72, 734-47	13.9	56
63	Role of leucine-rich repeat proteins in the development and function of neural circuits. <i>Annual Review of Cell and Developmental Biology</i> , 2011 , 27, 697-729	12.6	107
62	Cortical representations of olfactory input by trans-synaptic tracing. <i>Nature</i> , 2011 , 472, 191-6	50.4	383
61	The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting. <i>Neural Development</i> , 2011 , 6, 5	3.9	43
60	Using the Q system in Drosophila melanogaster. <i>Nature Protocols</i> , 2011 , 6, 1105-20	18.8	44
59	Site-specific integrase-mediated transgenesis in mice via pronuclear injection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 7902-7	11.5	152
58	Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 154	114 ¹ 9 ⁵	127
57	Ten years of Nature Reviews Neuroscience: insights from the highly cited. <i>Nature Reviews Neuroscience</i> , 2010 , 11, 718-26	13.5	26
56	Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. <i>Nature Neuroscience</i> , 2010 , 13, 439-49	25.5	242
55	Visualizing the distribution of synapses from individual neurons in the mouse brain. <i>PLoS ONE</i> , 2010 , 5, e11503	3.7	78

(2007-2010)

54	Histone deacetylase Rpd3 regulates olfactory projection neuron dendrite targeting via the transcription factor Prospero. <i>Journal of Neuroscience</i> , 2010 , 30, 9939-46	6.6	31
53	The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. <i>Cell</i> , 2010 , 141, 536-48	56.2	379
52	Patterning axon targeting of olfactory receptor neurons by coupled hedgehog signaling at two distinct steps. <i>Cell</i> , 2010 , 142, 954-66	56.2	34
51	Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. <i>Neuron</i> , 2010 , 68, 695-709	13.9	157
50	The olfactory circuit of the fruit fly Drosophila melanogaster. Science China Life Sciences, 2010, 53, 472-8	88 .5	15
49	Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. <i>Nature Neuroscience</i> , 2009 , 12, 1542-50	25.5	85
48	Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. <i>Neuron</i> , 2009 , 62, 205-17	13.9	143
47	MicroRNA processing pathway regulates olfactory neuron morphogenesis. <i>Current Biology</i> , 2008 , 18, 1754-9	6.3	60
46	Genetic dissection of neural circuits. <i>Neuron</i> , 2008 , 57, 634-60	13.9	625
45	piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. <i>Developmental Cell</i> , 2008 , 14, 227-38	10.2	187
44	Genomic analysis of Drosophila neuronal remodeling: a role for the RNA-binding protein Boule as a negative regulator of axon pruning. <i>Journal of Neuroscience</i> , 2008 , 28, 6092-103	6.6	41
43	Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. <i>Journal of Neuroscience</i> , 2008 , 28, 2301-12	6.6	130
42	A global double-fluorescent Cre reporter mouse. <i>Genesis</i> , 2007 , 45, 593-605	1.9	2218
41	Lola regulates Drosophila olfactory projection neuron identity and targeting specificity. <i>Neural Development</i> , 2007 , 2, 14	3.9	46
40	Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. <i>Nature Neuroscience</i> , 2007 , 10, 828-37	25.5	84
39	Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. <i>Brain Research Reviews</i> , 2007 , 55, 220-7		41
38	Intrinsic control of precise dendritic targeting by an ensemble of transcription factors. <i>Current Biology</i> , 2007 , 17, 278-85	6.3	67
37	Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 449	¹ 5500	59

36	Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon-axon interactions. <i>Neuron</i> , 2007 , 53, 185-200	13.9	120
35	Development of continuous and discrete neural maps. <i>Neuron</i> , 2007 , 56, 284-300	13.9	171
34	Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. <i>Cell</i> , 2007 , 128, 399-410	56.2	139
33	Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. <i>Cell</i> , 2007 , 128, 1187-203	56.2	466
32	Wiring stability of the adult Drosophila olfactory circuit after lesion. <i>Journal of Neuroscience</i> , 2006 , 26, 3367-76	6.6	61
31	Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. <i>Neuron</i> , 2006 , 50, 883-95	13.9	206
30	Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. <i>Nature Neuroscience</i> , 2006 , 9, 349-55	25.5	143
29	A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. <i>Nature Protocols</i> , 2006 , 1, 2583-9	18.8	138
28	A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. <i>Nature Protocols</i> , 2006 , 1, 2110-5	18.8	225
27	Mosaic analysis with double markers in mice. <i>Cell</i> , 2005 , 121, 479-92	56.2	407
27	Mosaic analysis with double markers in mice. <i>Cell</i> , 2005 , 121, 479-92 Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. <i>Current Biology</i> , 2005 , 15, 982-92	56.2	407 126
	Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory		
26	Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. <i>Current Biology</i> , 2005 , 15, 982-92 Developmentally programmed remodeling of the Drosophila olfactory circuit. <i>Development</i>	6.3	126
26	Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. <i>Current Biology</i> , 2005 , 15, 982-92 Developmentally programmed remodeling of the Drosophila olfactory circuit. <i>Development (Cambridge)</i> , 2005 , 132, 725-37 Developmental origin of wiring specificity in the olfactory system of Drosophila. <i>Development</i>	6.3	126
26 25 24	Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. <i>Current Biology</i> , 2005 , 15, 982-92 Developmentally programmed remodeling of the Drosophila olfactory circuit. <i>Development (Cambridge)</i> , 2005 , 132, 725-37 Developmental origin of wiring specificity in the olfactory system of Drosophila. <i>Development (Cambridge)</i> , 2004 , 131, 117-30 Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical	6.3 6.6 6.6	126 140 181
26 25 24 23	Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. <i>Current Biology</i> , 2005 , 15, 982-92 Developmentally programmed remodeling of the Drosophila olfactory circuit. <i>Development (Cambridge)</i> , 2005 , 132, 725-37 Developmental origin of wiring specificity in the olfactory system of Drosophila. <i>Development (Cambridge)</i> , 2004 , 131, 117-30 Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. <i>Nature Neuroscience</i> , 2004 , 7, 819-25	6.3 6.6 6.6	126 140 181
26 25 24 23 22	Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. <i>Current Biology</i> , 2005 , 15, 982-92 Developmentally programmed remodeling of the Drosophila olfactory circuit. <i>Development (Cambridge)</i> , 2005 , 132, 725-37 Developmental origin of wiring specificity in the olfactory system of Drosophila. <i>Development (Cambridge)</i> , 2004 , 131, 117-30 Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. <i>Nature Neuroscience</i> , 2004 , 7, 819-25 Glia engulf degenerating axons during developmental axon pruning. <i>Current Biology</i> , 2004 , 14, 678-84 Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory	6.3 6.6 6.6 25.5 6.3	126 140 181 93

18	Target neuron prespecification in the olfactory map of Drosophila. <i>Nature</i> , 2001 , 414, 204-8	50.4	334
17	Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. <i>Trends in Neurosciences</i> , 2001 , 24, 251-4	13.3	726
16	Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. <i>Neuron</i> , 2000 , 28, 807-18	13.9	223
15	Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. <i>Neuron</i> , 1999 , 22, 451-61	13.9	2044
14	Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. <i>Nature</i> , 1996 , 379, 837-40	50.4	401
13	Principles of Neurobiology		8
12	Temporal Association Cortex - A Cortical Hub for Processing Infant Vocalizations. SSRN Electronic Journal,	1	1
11	Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-cell RNA Sequencing		2
10	Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks		2
9	A Genome-wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis		2
8	Cerebellar nuclei evolved by repeatedly duplicating a conserved cell type set		9
7	Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila		5
6	Anatomical, Physiological, and Functional Heterogeneity of the Dorsal Raphe Serotonin System		3
5	Temporal Evolution of Cortical Ensembles Promoting Remote Memory Retrieval		1
4	Mapping Mouse Brain Slice Sequence to a Reference Brain Without 3D Reconstruction		2
3	Coordinating Receptor Expression and Wiring Specificity in Olfactory Receptor Neurons		2
2	Cellular Bases of Olfactory Circuit Assembly Revealed by Systematic Time-lapse Imaging		1
1	Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly		16