Daniel J. Conley

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2235863/daniel-j-conley-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

158	14,625	59	120
papers	citations	h-index	g-index
173	17,017 ext. citations	5.8	6.52
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
158	Linking silicon isotopic signatures with diatom communities. <i>Geochimica Et Cosmochimica Acta</i> , 2022 , 323, 102-122	5.5	O
157	Multi-proxy record of Holocene paleoenvironmental conditions from Yellowstone Lake, Wyoming, USA. <i>Quaternary Science Reviews</i> , 2021 , 274, 107275	3.9	О
156	Quantifying Non-Thermal Silicate Weathering Using Ge/Si and Si Isotopes in Rivers Draining the Yellowstone Plateau Volcanic Field, USA. <i>Geochemistry, Geophysics, Geosystems</i> , 2021 , 22, e2021GC009	19 0 46	
155	Human influence on the continental Si budget during the last 4300 years: B0Sidiatom in varved lake sediments (Tiefer See, NE Germany). <i>Quaternary Science Reviews</i> , 2021 , 258, 106869	3.9	3
154	Modern silicon dynamics of a small high-latitude subarctic lake. <i>Biogeosciences</i> , 2021 , 18, 2325-2345	4.6	3
153	Phosphorus burial in vivianite-type minerals in methane-rich coastal sediments. <i>Marine Chemistry</i> , 2021 , 231, 103948	3.7	2
152	Coupled dynamics of iron, manganese, and phosphorus in brackish coastal sediments populated by cable bacteria. <i>Limnology and Oceanography</i> , 2021 , 66, 2611-2631	4.8	4
151	Impact of Holocene climate change on silicon cycling in Lake 850, Northern Sweden. <i>Holocene</i> , 2021 , 31, 1582-1592	2.6	
150	Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries. <i>Biogeochemistry</i> , 2021 , 154, 385-403	3.8	7
149	System controls of coastal and open ocean oxygen depletion. <i>Progress in Oceanography</i> , 2021 , 197, 102	263.8	9
148	Constraints on Earth System Functioning at the Paleocene-Eocene Thermal Maximum From the Marine Silicon Cycle. <i>Paleoceanography and Paleoclimatology</i> , 2020 , 35, e2020PA003873	3.3	5
147	Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea. <i>Biogeosciences</i> , 2020 , 17, 2745-2766	4.6	12
146	What is diatomite?. Quaternary Research, 2020, 96, 48-52	1.9	6
145	Factors regulating the coastal nutrient filter in the Baltic Sea. <i>Ambio</i> , 2020 , 49, 1194-1210	6.5	30
144	Impact of human disturbance on the biogeochemical silicon cycle in a coastal sea revealed by silicon isotopes. <i>Limnology and Oceanography</i> , 2020 , 65, 515-528	4.8	3
143	Recovery from multi-millennial natural coastal hypoxia in the Stockholm Archipelago, Baltic Sea, terminated by modern human activity. <i>Limnology and Oceanography</i> , 2020 , 65, 3085-3097	4.8	3
142	Past, Present and Future Eutrophication Status of the Baltic Sea. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	39

141	Application of the isotope pairing technique in sediments: Use, challenges, and new directions. Limnology and Oceanography: Methods, 2019 , 17, 112-136	2.6	20
140	A reply to the comment by Karlsson et al Limnology and Oceanography, 2019, 64, 1832	4.8	1
139	Sediment alkaline-extracted organic matter (AEOM) fluorescence: An archive of Holocene marine organic matter origins. <i>Science of the Total Environment</i> , 2019 , 676, 298-304	10.2	2
138	Landscape-Scale Variability of Organic Carbon Burial by SW Greenland Lakes. <i>Ecosystems</i> , 2019 , 22, 170	1631920	9
137	Si cycling in transition zones: a study of Si isotopes and biogenic silica accumulation in the Chesapeake Bay through the Holocene. <i>Biogeochemistry</i> , 2019 , 146, 145-170	3.8	6
136	Baltic Sea Hypoxia Takes Many Shapes and Sizes. <i>Limnology and Oceanography Bulletin</i> , 2019 , 28, 125-1	29 .9	14
135	Short exposure to oxygen and sulfide alter nitrification, denitrification, and DNRA activity in seasonally hypoxic estuarine sediments. <i>FEMS Microbiology Letters</i> , 2019 , 366,	2.9	17
134	Declining oxygen in the global ocean and coastal waters. <i>Science</i> , 2018 , 359,	33.3	909
133	Yellowstone Lake Coring Projects: Research with a History. <i>Limnology and Oceanography Bulletin</i> , 2018 , 27, 6-10	0.9	
132	A Review of the Stable Isotope Bio-geochemistry of the Global Silicon Cycle and Its Associated Trace Elements. <i>Frontiers in Earth Science</i> , 2018 , 5,	3.5	40
131	Competition between Silicifiers and Non-silicifiers in the Past and Present Ocean and Its Evolutionary Impacts. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	17
130	Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial. <i>Biogeosciences</i> , 2018 , 15, 6979-6996	4.6	26
129	The Venerable Silica Cycle 2017 , 157-176		
128	Silica Stories 2017 ,		1
127	Silica, Be Dammed! 2017 , 135-156		
126	Variability in chemistry of surface and soil waters of an evapotranspiration-dominated flood-pulsed wetland: solute processing in the Okavango Delta, Botswana. <i>Water S A</i> , 2017 , 43, 104	1.3	6
125	Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea. <i>Limnology and Oceanography</i> , 2017 , 62, S222-S238	4.8	66
124	Large differences between carbon and nutrient loss rates along the land to ocean aquatic continuumImplications for energy:nutrient ratios at downstream sites. <i>Limnology and Oceanography</i> , 2017 , 62, S183-S193	4.8	9

123	Enrichment of dissolved silica in the deep equatorial Pacific during the Eocene-Oligocene. <i>Paleoceanography</i> , 2017 , 32, 848-863		13
122	The trapping of organic matter within plant patches in the channels of the Okavango Delta: a matter of quality. <i>Aquatic Sciences</i> , 2017 , 79, 661-674	2.5	8
121	Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. <i>Biological Reviews</i> , 2017 , 92, 135-149	13.5	168
120	Assessing the Potential of Sponges (Porifera) as Indicators of Ocean Dissolved Si Concentrations. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	5
119	Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	47
118	Paleolimnological records of regime shifts in lakes in response to climate change and anthropogenic activities. <i>Journal of Paleolimnology</i> , 2016 , 56, 1-14	2.1	45
117	Evolving coastal character of a Baltic Sea inlet during the Holocene shoreline regression: impact on coastal zone hypoxia. <i>Journal of Paleolimnology</i> , 2016 , 55, 319-338	2.1	15
116	Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea. <i>Biogeosciences</i> , 2016 , 13, 4751-4765	4.6	12
115	Estimated storage of amorphous silica in soils of the circum-Arctic tundra region. <i>Global Biogeochemical Cycles</i> , 2016 , 30, 479-500	5.9	9
	Redox Effects on Organic Matter Storage in Coastal Sediments During the Holocene: A		
114	Biomarker/Proxy Perspective. <i>Annual Review of Earth and Planetary Sciences</i> , 2016 , 44, 295-319	15.3	33
114			33 124
	Biomarker/Proxy Perspective. <i>Annual Review of Earth and Planetary Sciences</i> , 2016 , 44, 295-319		
113	Biomarker/Proxy Perspective. <i>Annual Review of Earth and Planetary Sciences</i> , 2016 , 44, 295-319 The continental Si cycle and its impact on the ocean Si isotope budget. <i>Chemical Geology</i> , 2016 , 425, 124 A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian	-362	124
113	Biomarker/Proxy Perspective. <i>Annual Review of Earth and Planetary Sciences</i> , 2016 , 44, 295-319 The continental Si cycle and its impact on the ocean Si isotope budget. <i>Chemical Geology</i> , 2016 , 425, 124 A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes. <i>Earth and Planetary Science Letters</i> , 2016 , 453, 67-77 Silica uptake and release in live and decaying biomass in a northern hardwood forest. <i>Ecology</i> , 2016 ,	- 36 2 5-3	124
113 112 111	Biomarker/Proxy Perspective. <i>Annual Review of Earth and Planetary Sciences</i> , 2016 , 44, 295-319 The continental Si cycle and its impact on the ocean Si isotope budget. <i>Chemical Geology</i> , 2016 , 425, 12-4 A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes. <i>Earth and Planetary Science Letters</i> , 2016 , 453, 67-77 Silica uptake and release in live and decaying biomass in a northern hardwood forest. <i>Ecology</i> , 2016 , 97, 3044-3057	-3 6 2 5-3 4.6	124 29 16
113 112 111 110	Biomarker/Proxy Perspective. <i>Annual Review of Earth and Planetary Sciences</i> , 2016 , 44, 295-319 The continental Si cycle and its impact on the ocean Si isotope budget. <i>Chemical Geology</i> , 2016 , 425, 12- A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes. <i>Earth and Planetary Science Letters</i> , 2016 , 453, 67-77 Silica uptake and release in live and decaying biomass in a northern hardwood forest. <i>Ecology</i> , 2016 , 97, 3044-3057 The Role of Vegetation in the Okavango Delta Silica Sink. <i>Wetlands</i> , 2015 , 35, 171-181 Holocene climate and environmental change in north-eastern Kamchatka (Russian Far East),	-3 6 2 5-3 4.6 1.7	124 29 16
113 112 111 110 109	Biomarker/Proxy Perspective. <i>Annual Review of Earth and Planetary Sciences</i> , 2016 , 44, 295-319 The continental Si cycle and its impact on the ocean Si isotope budget. <i>Chemical Geology</i> , 2016 , 425, 12- A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes. <i>Earth and Planetary Science Letters</i> , 2016 , 453, 67-77 Silica uptake and release in live and decaying biomass in a northern hardwood forest. <i>Ecology</i> , 2016 , 97, 3044-3057 The Role of Vegetation in the Okavango Delta Silica Sink. <i>Wetlands</i> , 2015 , 35, 171-181 Holocene climate and environmental change in north-eastern Kamchatka (Russian Far East), inferred from a multi-proxy study of lake sediments. <i>Global and Planetary Change</i> , 2015 , 134, 41-54 Dissolved Organic Nitrogen Inputs from Wastewater Treatment Plant Effluents Increase Responses	5.3 4.6 1.7 4.2	124 29 16 14

(2013-2015)

105	Hypoxia-driven variations in iron and manganese shuttling in the Baltic Sea over the past 8 kyr. <i>Geochemistry, Geophysics, Geosystems</i> , 2015 , 16, 3754-3766	3.6	31
104	The contribution of tephra constituents during biogenic silica determination: implications for soil and palaeoecological studies. <i>Biogeosciences</i> , 2015 , 12, 3789-3804	4.6	3
103	Are recent changes in sediment manganese sequestration in the euxinic basins of the Baltic Sea linked to the expansion of hypoxia?. <i>Biogeosciences</i> , 2015 , 12, 4875-4894	4.6	33
102	Amorphous silica pools in permafrost soils of the Central Canadian Arctic and the potential impact of climate change. <i>Biogeochemistry</i> , 2015 , 124, 441-459	3.8	9
101	Glacio-isostatic control on hypoxia in a high-latitude shelf basin. <i>Geology</i> , 2015 , 43, 427-430	5	23
100	Alkaline-extractable silicon from land to ocean: A challenge for biogenic silicon determination. <i>Limnology and Oceanography: Methods</i> , 2015 , 13, 329-344	2.6	28
99	Combining limnology and palaeolimnology to investigate recent regime shifts in a shallow, eutrophic lake. <i>Journal of Paleolimnology</i> , 2014 , 51, 437-448	2.1	21
98	Amorphous Silica Transport in the Ganges Basin: Implications for Si Delivery to the Oceans. <i>Procedia Earth and Planetary Science</i> , 2014 , 10, 271-274		18
97	Hypoxia sustains cyanobacteria blooms in the Baltic sea. <i>Environmental Science & Environmental Scienc</i>	10.3	86
96	Tracing silicon cycling in the Okavango Delta, a sub-tropical flood-pulse wetland using silicon isotopes. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 142, 132-148	5.5	23
95	Eutrophication-Driven Deoxygenation in the Coastal Ocean. Oceanography, 2014, 27, 172-183	2.3	173
94	Deoxygenation of the Baltic Sea during the last century. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 5628-33	11.5	339
93	Pedogenic and biogenic alkaline-extracted silicon distributions along a temperate land-use gradient. <i>European Journal of Soil Science</i> , 2014 , 65, 693-705	3.4	38
92	Hypoxia in the Baltic Sea: biogeochemical cycles, benthic fauna, and management. <i>Ambio</i> , 2014 , 43, 26-	3 6 .5	119
91	Lack of steady-state in the global biogeochemical Si cycle: emerging evidence from lake Si sequestration. <i>Biogeochemistry</i> , 2014 , 117, 255-277	3.8	49
90	Carbon cycling within an East African lake revealed by the carbon isotope composition of diatom silica: a 25-ka record from Lake Challa, Mt. Kilimanjaro. <i>Quaternary Science Reviews</i> , 2013 , 66, 55-63	3.9	33
89	Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. <i>Earth and Planetary Science Letters</i> , 2013 , 366, 137-150	5.3	48
88	Special Issue IBIS 2011: The Biogeochemical Silica Cycle From Land to Ocean. <i>Silicon</i> , 2013 , 5, 1-2	2.4	

87	Response to Rose et al. and Petersen et al <i>Marine Pollution Bulletin</i> , 2012 , 64, 455-456	6.7	6
86	Emerging understanding of the ecosystem silica filter. <i>Biogeochemistry</i> , 2012 , 107, 9-18	3.8	124
85	Changes in amorphous silica sequestration with eutrophication of riverine impoundments. <i>Biogeochemistry</i> , 2012 , 108, 413-427	3.8	12
84	Ecological Regime Shifts in Lake K l ksjö, Sweden, in Response to Abrupt Climate Change Around the 8.2 ka Cooling Event. <i>Ecosystems</i> , 2012 , 15, 1336-1350	3.9	16
83	Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs. <i>Global Biogeochemical Cycles</i> , 2012 , 26, n/a-n/a	5.9	32
82	A welcome can of worms? Hypoxia mitigation by an invasive species. <i>Global Change Biology</i> , 2012 , 18, 422-434	11.4	120
81	Ecology: save the Baltic Sea. <i>Nature</i> , 2012 , 486, 463-4	50.4	81
80	Hypoxia is increasing in the coastal zone of the Baltic Sea. <i>Environmental Science & Environmental Sc</i>	10.3	255
79	Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. <i>Frontiers in Ecology and the Environment</i> , 2011 , 9, 18-26	5.5	485
78	Anthropogenic impact on amorphous silica pools in temperate soils. <i>Biogeosciences</i> , 2011 , 8, 2281-2293	4.6	86
77	Climate dependent diatom production is preserved in biogenic Si isotope signatures. <i>Biogeosciences</i> , 2011 , 8, 3491-3499	4.6	9
76	Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles. <i>Marine Pollution Bulletin</i> , 2011 , 62, 1385-8	6.7	71
75	Caribbean hydrological variability during the Holocene as reconstructed from crater lakes on the island of Grenada. <i>Journal of Quaternary Science</i> , 2011 , 26, 829-838	2.3	14
74	Hypoxia and cyanobacteria blooms - are they really natural features of the late Holocene history of the Baltic Sea?. <i>Biogeosciences</i> , 2010 , 7, 2567-2580	4.6	57
73	Historical land use change has lowered terrestrial silica mobilization. <i>Nature Communications</i> , 2010 , 1, 129	17.4	157
72	An enormous amorphous silica stock in boreal wetlands. <i>Journal of Geophysical Research</i> , 2010 , 115,		37
71	Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. <i>Journal of Paleolimnology</i> , 2010 , 43, 247-259	2.1	74
70	Eutrophication: Time to Adjust ExpectationsResponse. <i>Science</i> , 2009 , 324, 724-725	33.3	29

69	Ecosystem thresholds with hypoxia 2009 , 21-29		12
68	Ecosystem thresholds with hypoxia. <i>Hydrobiologia</i> , 2009 , 629, 21-29	2.4	175
67	Return to Neverland: Shifting Baselines Affect Eutrophication Restoration Targets. <i>Estuaries and Coasts</i> , 2009 , 32, 29-36	2.8	423
66	The Global Biogeochemical Silicon Cycle. <i>Silicon</i> , 2009 , 1, 207-213	2.4	113
65	Tackling hypoxia in the Baltic Sea: is engineering a solution?. <i>Environmental Science & Emp; Technology</i> , 2009 , 43, 3407-11	10.3	80
64	Ecology. Controlling eutrophication: nitrogen and phosphorus. <i>Science</i> , 2009 , 323, 1014-5	33.3	2331
63	Hypoxia-related processes in the Baltic Sea. <i>Environmental Science & Environmental Science & Environm</i>	10.3	381
62	Silica: an essential nutrient in wetland biogeochemistry. <i>Frontiers in Ecology and the Environment</i> , 2009 , 7, 88-94	5.5	140
61	Rapid Holocene climate changes in the North Atlantic: evidence from lake sediments from the Faroe Islands. <i>Boreas</i> , 2008 , 35, 23-34	2.4	2
60	Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. <i>Global Change Biology</i> , 2008 , 14, 2548-2554	11.4	100
59	Detecting environmental change in estuaries: Nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. <i>Estuarine, Coastal and Shelf Science</i> , 2008 , 76, 45-5	5 2 .9	34
58	Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. <i>Earth-Science Reviews</i> , 2008 , 91, 77-92	10.2	239
57	Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea. <i>Journal of Marine Systems</i> , 2008 , 73, 284-299	2.7	32
56	Silicon dynamics in the Oder estuary, Baltic Sea. <i>Journal of Marine Systems</i> , 2008 , 73, 250-262	2.7	21
55	Past, present and future state of the biogeochemical Si cycle in the Baltic Sea. <i>Journal of Marine Systems</i> , 2008 , 73, 338-346	2.7	46
54	Regime shift in a coastal marine ecosystem 2008 , 18, 497-510		128
53	Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rh\(\textitle e\) rivers. Continental Shelf Research, 2008, 28, 1527-1537	2.4	180
52	Climate-driven ecosystem succession in the Sahara: the past 6000 years. <i>Science</i> , 2008 , 320, 765-8	33.3	479

51	Variability and seasonality of North Atlantic climate during the early Holocene: evidence from Faroe Island lake sediments. <i>Holocene</i> , 2008 , 18, 851-860	2.6	16
50	Factors that Control the Range and Variability of Amorphous Silica in Soils in the Hubbard Brook Experimental Forest. <i>Soil Science Society of America Journal</i> , 2008 , 72, 1637-1644	2.5	39
49	Silica fluxes and trapping in two contrasting natural impoundments of the upper Mississippi River. <i>Biogeochemistry</i> , 2008 , 87, 217-230	3.8	44
48	Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. <i>European Journal of Soil Science</i> , 2007 , 58, 1446-1459	3.4	126
47	LONG-TERM CHANGES AND IMPACTS OF HYPOXIA IN DANISH COASTAL WATERS 2007 , 17, S165-S184		207
46	Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. <i>Ambio</i> , 2007 , 36, 186-94	6.5	299
45	Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. <i>Estuarine, Coastal and Shelf Science</i> , 2006 , 68, 567-578	2.9	53
44	Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. <i>Paleobiology</i> , 2006 , 32, 38-54	2.6	24
43	Rapid Holocene climate changes in the North Atlantic: evidence from lake sediments from the Faroe Islands. <i>Boreas</i> , 2006 , 35, 23-34	2.4	18
42	Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. <i>Paleobiology</i> , 2006 , 32, 38-54	2.6	46
41	Diffuse and point sources of silica in the Seine River watershed. <i>Environmental Science & Environmental Science & Technology</i> , 2006 , 40, 6630-5	10.3	75
40	Methodologies for amorphous silica analysis. <i>Journal of Geochemical Exploration</i> , 2006 , 88, 235-238	3.8	39
39	Coastal eutrophication and trend reversal: A Danish case study. <i>Limnology and Oceanography</i> , 2006 , 51, 398-408	4.8	161
38	Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. <i>Biogeochemistry</i> , 2006 , 80, 89-108	3.8	211
37	Effects of sediment storage conditions on pigment analyses. <i>Limnology and Oceanography: Methods</i> , 2005 , 3, 477-487	2.6	35
36	Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. <i>Journal of Hydrology</i> , 2005 , 304, 274-288	6	230
35	Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. <i>Marine Chemistry</i> , 2005 , 95, 283-302	3.7	91
34	Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. <i>Marine Pollution Bulletin</i> , 2004 , 49, 283-90	6.7	103

(1996-2004)

33	Identification of characteristic regions and representative stations: a study of water quality variables in the Kattegat. <i>Environmental Monitoring and Assessment</i> , 2004 , 90, 203-24	3.1	11
32	Frequency, composition, and causes of summer phytoplankton blooms in a shallow coastal ecosystem, the Kattegat. <i>Limnology and Oceanography</i> , 2004 , 49, 191-201	4.8	37
31	A 150-year reconstruction of the history of coastal eutrophication in Roskilde Fjord, Denmark. <i>Marine Pollution Bulletin</i> , 2003 , 46, 1615-8	6.7	64
30	Coastal eutrophication and the Danish national aquatic monitoring and assessment program. <i>Estuaries and Coasts</i> , 2002 , 25, 848-861		83
29	Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. <i>Environmental Science & Environmental Scienc</i>	10.3	312
28	Terrestrial ecosystems and the global biogeochemical silica cycle. <i>Global Biogeochemical Cycles</i> , 2002 , 16, 68-1-68-8	5.9	374
27	Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2002 , 59, 173-190	2.4	60
26	Biogenic Silica. Developments in Paleoenvironmental Research, 2002, 281-293		43
25	Hypoxia, nutrient management and restoration in danish waters. <i>Coastal and Estuarine Studies</i> , 2001 , 425-434		7
24	Characteristics of Danish estuaries. <i>Estuaries and Coasts</i> , 2000 , 23, 820		145
24	Characteristics of Danish estuaries. <i>Estuaries and Coasts</i> , 2000 , 23, 820 Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. <i>Ambio</i> , 2000 , 29, 45-50	6.5	145 253
	Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs	6.5 4.8	
23	Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. <i>Ambio</i> , 2000 , 29, 45-50 The transport and retention of dissolved silicate by rivers in Sweden and Finland. <i>Limnology and</i>		253
23	Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. <i>Ambio</i> , 2000 , 29, 45-50 The transport and retention of dissolved silicate by rivers in Sweden and Finland. <i>Limnology and Oceanography</i> , 2000 , 45, 1850-1853		253 92
23	Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. <i>Ambio</i> , 2000 , 29, 45-50 The transport and retention of dissolved silicate by rivers in Sweden and Finland. <i>Limnology and Oceanography</i> , 2000 , 45, 1850-1853 Biogeochemical nutrient cycles and nutrient management strategies 1999 , 87-96		253 92 8
23 22 21 20	Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. <i>Ambio</i> , 2000 , 29, 45-50 The transport and retention of dissolved silicate by rivers in Sweden and Finland. <i>Limnology and Oceanography</i> , 2000 , 45, 1850-1853 Biogeochemical nutrient cycles and nutrient management strategies 1999 , 87-96 Biogeochemical nutrient cycles and nutrient management strategies 1999 , 410, 87-96 An interlaboratory comparison for the measurement of biogenic silica in sediments. <i>Marine</i>	4.8	253 92 8 235
23 22 21 20	Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. <i>Ambio</i> , 2000 , 29, 45-50 The transport and retention of dissolved silicate by rivers in Sweden and Finland. <i>Limnology and Oceanography</i> , 2000 , 45, 1850-1853 Biogeochemical nutrient cycles and nutrient management strategies 1999 , 87-96 Biogeochemical nutrient cycles and nutrient management strategies 1999 , 410, 87-96 An interlaboratory comparison for the measurement of biogenic silica in sediments. <i>Marine Chemistry</i> , 1998 , 63, 39-48 Riverine contribution of biogenic silica to the oceanic silica budget. <i>Limnology and Oceanography</i> ,	3.7	253 92 8 235 159

15	A sediment chronology of the eutrophication of Chesapeake Bay. Estuaries and Coasts, 1996, 19, 488		104
14	Transformation of particle-bound phosphorus at the land-sea interface. <i>Estuarine, Coastal and Shelf Science</i> , 1995 , 40, 161-176	2.9	89
13	SILICON DEPOSITION DURING THE CELL CYCLE OF THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) DETERMINED USING DUAL RHODAMINE 123 AND PROPIDIUM IODIDE STAINING1. <i>Journal of Phycology</i> , 1994 , 30, 45-55	3	63
12	Transient variations in phytoplankton productivity at the JGOFS Bermuda time series station. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 903-924	2.5	88
11	Potential Role of Sponge Spicules in Influencing the Silicon Biogeochemistry of Florida Lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1993 , 50, 296-302	2.4	72
10	Size Structure of Particulate Biogenic Silica in Lake Michigan. <i>Journal of Great Lakes Research</i> , 1991 , 17, 18-24	3	3
9	Siliceous microfossil succession in Lake Michigan. Limnology and Oceanography, 1990, 35, 959-967	4.8	12
8	Differences in silica content between marine and freshwater diatoms. <i>Limnology and Oceanography</i> , 1989 , 34, 205-212	4.8	151
7	Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments. <i>Biogeochemistry</i> , 1988 , 6, 161-179	3.8	59
6	Silica and Phosphorus Flux from Sediments: Importance of Internal Recycling in Lake Michigan. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1988 , 45, 1030-1035	2.4	37
5	Sediment Record of Biogeochemical Responses to Anthropogenic Perturbations of Nutrient Cycles in Lake Ontario. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1988 , 45, 1291-1303	2.4	61
4	QUANTITATIVE ANALYSIS OF SILICEOUS MICROFOSSILS IN THE SEDIMENTS OF LAKE ERIERS CENTRAL BASIN. <i>Diatom Research</i> , 1987 , 2, 113-134	0.9	31
3	Distribution of biogenic silica in the surficial sediments of Lake Michigan. <i>Canadian Journal of Earth Sciences</i> , 1986 , 23, 1442-1449	1.5	7
2	Variations in Melosira islandica valve morphology in Lake Ontario sediments related to eutrophication and silica depletion1. <i>Limnology and Oceanography</i> , 1985 , 30, 414-418	4.8	27
1	Historical Relationships between Phosphorus Loading and Biogenic Silica Accumulation in Bay of Quinte Sediments. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1985 , 42, 1401-1409	2.4	18