
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2235836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 2018, 627, 744-755.	3.9	494
2	A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling and Software, 2017, 95, 229-245.	1.9	416
3	A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 2019, 573, 311-323.	2.3	409
4	Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of the Total Environment, 2018, 621, 1124-1141.	3.9	298
5	Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of Environmental Management, 2018, 217, 1-11.	3.8	231
6	Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 2019, 175, 203-218.	2.2	229
7	Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 2017, 76, 1.	1.3	211
8	Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing, 2020, 12, 266.	1.8	210
9	Landslide spatial modelling using novel bivariate statistical based NaÃ⁻ve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Science of the Total Environment, 2019, 663, 1-15.	3.9	182
10	New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water (Switzerland), 2018, 10, 1210.	1.2	174
11	Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto International, 2019, 34, 1252-1272.	1.7	173
12	Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 2019, 247, 712-729.	3.8	169
13	A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naÃ ⁻ ve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics, Natural Hazards and Risk, 2017, 8, 1955-1977.	2.0	162
14	Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, NaĀ⁻ve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. International Journal of Environmental Research and Public Health, 2020, 17, 2749.	1.2	159
15	Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of the Total Environment, 2020, 720, 137320.	3.9	157
16	Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors, 2018, 18, 3777.	2.1	146
17	Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resources Management, 2019, 33, 281-302.	1.9	145
18	Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression. Applied Sciences (Switzerland), 2018, 8, 2540.	1.3	140

#	Article	IF	CITATIONS
19	Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests, 2019, 10, 157.	0.9	136
20	Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 4397-4419.	1.6	135
21	A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 2018, 33, 157-170.	1.8	131
22	Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms. Sustainability, 2019, 11, 4386.	1.6	130
23	Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Applied Sciences (Switzerland), 2019, 9, 3755.	1.3	129
24	Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods. Scientific Reports, 2018, 8, 15364.	1.6	124
25	Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. Remote Sensing, 2019, 11, 1589.	1.8	124
26	Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sensing, 2018, 10, 1527.	1.8	121
27	Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors, 2018, 18, 2464.	2.1	120
28	A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 2020, 35, 1267-1292.	1.7	114
29	Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena, 2019, 178, 172-188.	2.2	107
30	A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment. Geocarto International, 2019, 34, 1427-1457.	1.7	105
31	A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena, 2017, 157, 213-226.	2.2	104
32	Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto International, 2019, 34, 1177-1201.	1.7	99
33	A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Natural Hazards, 2012, 64, 1639-1656.	1.6	98
34	Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 2021, 12, 101100.	4.3	95
35	Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Natural Hazards, 2019, 96, 173-212.	1.6	94
36	A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto International, 2018, 33, 1398-1420.	1.7	93

#	Article	IF	CITATIONS
37	GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran. Remote Sensing, 2020, 12, 2478.	1.8	92
38	Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm. Remote Sensing, 2019, 11, 931.	1.8	90
39	New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests, 2019, 10, 743.	0.9	89
40	Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests, 2020, 11, 421.	0.9	87
41	A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors, 2019, 19, 2444.	2.1	86
42	A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides. Remote Sensing, 2018, 10, 1538.	1.8	84
43	Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. International Journal of Environmental Research and Public Health, 2020, 17, 4933.	1.2	84
44	GIS-Based Gully Erosion Susceptibility Mapping: A Comparison of Computational Ensemble Data Mining Models. Applied Sciences (Switzerland), 2020, 10, 2039.	1.3	78
45	GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards and Risk, 2011, 2, 33-50.	2.0	72
46	Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences, 2017, 76, 1.	1.3	66
47	Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?. Journal of Hydrology, 2021, 592, 125615.	2.3	65
48	A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water (Switzerland), 2019, 11, 2013.	1.2	64
49	Sinkhole susceptibility mapping: A comparison between Bayesâ€based machine learning algorithms. Land Degradation and Development, 2019, 30, 730-745.	1.8	63
50	Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sensing, 2021, 13, 1349.	1.8	61
51	A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environmental Earth Sciences, 2019, 78, 1.	1.3	60
52	SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 2019, 10, 2167-2175.	4.3	60
53	Deep learning neural networks for spatially explicit prediction of flash flood probability. Geoscience Frontiers, 2021, 12, 101076.	4.3	60
54	Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction. Applied Sciences (Switzerland), 2019, 9, 2824.	1.3	58

#	Article	IF	CITATIONS
55	Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests, 2020, 11, 830.	0.9	57
56	Hybrid Computational Intelligence Methods for Landslide Susceptibility Mapping. Symmetry, 2020, 12, 325.	1.1	56
57	Towards an Ensemble Machine Learning Model of Random Subspace Based Functional Tree Classifier for Snow Avalanche Susceptibility Mapping. IEEE Access, 2020, 8, 145968-145983.	2.6	50
58	Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran. Applied Sciences (Switzerland), 2020, 10, 5047.	1.3	50
59	Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models. Water (Switzerland), 2020, 12, 985.	1.2	50
60	SEVUCAS: A Novel GIS-Based Machine Learning Software for Seismic Vulnerability Assessment. Applied Sciences (Switzerland), 2019, 9, 3495.	1.3	42
61	Daily Water Level Prediction of Zrebar Lake (Iran): A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms. ISPRS International Journal of Geo-Information, 2020, 9, 479.	1.4	42
62	Hybridized neural fuzzy ensembles for dust source modeling and prediction. Atmospheric Environment, 2020, 224, 117320.	1.9	39
63	Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides. Applied Soft Computing Journal, 2022, 116, 108254.	4.1	39
64	Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM+ Images. International Journal of Environmental Research and Public Health, 2020, 17, 4210.	1.2	37
65	Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. Open Construction and Building Technology Journal, 2019, 13, 178-188.	0.3	32
66	A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran. Sensors, 2022, 22, 1573.	2.1	31
67	A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 2020, 96, 103971.	4.3	29
68	Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques. , 2019, , 419-434.		22
69	A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers. Sustainability, 2020, 12, 1063.	1.6	22
70	Development of 48-hour Precipitation Forecasting Model using Nonlinear Autoregressive Neural Network. Lecture Notes in Civil Engineering, 2020, , 1191-1196.	0.3	21
71	Performance Evaluation and Comparison of Bivariate Statistical-Based Artificial Intelligence Algorithms for Spatial Prediction of Landslides. ISPRS International Journal of Geo-Information, 2020, 9, 696.	1.4	14
72	Landslide susceptibility modeling based on remote sensing data and data mining techniques. Environmental Earth Sciences, 2022, 81, 1.	1.3	12

#	Article	IF	CITATIONS
73	A comparison study on the quantitative statistical methods for spatial prediction of shallow landslides (case study: Yozidar-Degaga Route in Kurdistan Province, Iran). Environmental Earth Sciences, 2022, 81, 1.	1.3	12
74	Predicting sustainable arsenic mitigation using machine learning techniques. Ecotoxicology and Environmental Safety, 2022, 232, 113271.	2.9	12
75	Application of a Novel Hybrid Machine Learning Algorithm in Shallow Landslide Susceptibility Mapping in a Mountainous Area. Frontiers in Environmental Science, 0, 10, .	1.5	6
76	Efficiency of artificial neural networks in determining scour depth at composite bridge piers. International Journal of River Basin Management, 2021, 19, 327-333.	1.5	5
77	Application of Artificial Intelligence in Predicting Groundwater Contaminants. , 2021, , 71-105.		3
78	Towards robust smart data-driven soil erodibility index prediction under different scenarios. Geocarto International, 2022, 37, 13176-13209.	1.7	1