Toyoji Kakuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2235496/publications.pdf

Version: 2024-02-01

178 4,912 37 58
papers citations h-index g-index

181 181 181 3685
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fabrication of composite Fe ₃ O ₄ nanoparticles coupled by thermo-responsive and fluorescent Eu complex on surface. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 109-115.	3.4	O
2	Precision synthesis for well-defined linear and/or architecturally controlled thermoresponsive poly($\langle i\rangle N\langle i\rangle$ -substituted acrylamide)s. Polymer Chemistry, 2022, 13, 1293-1319.	3.9	11
3	Eu3+- and Tb3+-Based Coordination Complexes of Poly(N-Isopropyl,N-methylacrylamide-stat-N,N-dimethylacrylamide) Copolymer: Synthesis, Characterization and Property. Polymers, 2022, 14, 1815.	4.5	3
4	Intra-Ligand H···F Interactions: Non-negligible Forces for Enhancing Thermostability of Cobalt Complexes in 1,3-Butadiene Polymerization. Organometallics, 2022, 41, 1688-1698.	2.3	1
5	Poly[glycidyl oligo(oxyethylene)carbamate]s (PGn-EOmR′ and R-PGn-EOmR′): controlled synthesis and effects of molecular parameters (n and m), side groups (R′), and end-groups (R) on thermoresponsive properties. Polymer Chemistry, 2021, 12, 2580-2591.	3.9	8
6	Amphiphilic diblock copolymers of poly(glycidol) with biodegradable polyester/polycarbonate. organocatalytic one-pot ROP and self-assembling property. Polymer Chemistry, 2021, 12, 5787-5795.	3.9	3
7	Maltotriose–Chlorin e6 Conjugate Linked via Tetraethyleneglycol as an Advanced Photosensitizer for Photodynamic Therapy. Synthesis and Antitumor Activities against Canine and Mouse Mammary Carcinoma Cells. ACS Omega, 2021, 6, 7023-7033.	3.5	7
8	Aggregation-induced fluorescent response of urea-bearing polyphenyleneethynylenes toward anion sensing. Science and Technology of Advanced Materials, 2021, 22, 597-606.	6.1	5
9	Precise Synthesis and Thermoresponsive Property of Poly(ethyl glycidyl ether) and Its Block and Statistic Copolymers with Poly(glycidol). Polymers, 2021, 13, 3873.	4.5	5
10	Thermoresponsive property of well-defined poly(N-methyl-N-n-propylacrylamide) and its copolymer architectures prepared by hydrosilylation-promoted group transfer polymerization. Polymer, 2020, 202, 122678.	3.8	6
11	Thermoresponsive properties of poly(<i>N</i> -isopropyl, <i>N</i> -methylacrylamide) and its statistical and block copolymers with poly(<i>N</i> , <i>N</i> -dimethylacrylamide) prepared by B(C ₆ F ₅) ₃ -catalyzed group transfer polymerization. Polymer Chemistry, 2020, 11, 2346-2359.	3.9	12
12	Synthesis and characterization of phenylboronic acid-containing polymer for glucose-triggered drug delivery+. Science and Technology of Advanced Materials, 2020, 21, 1-10.	6.1	43
13	Core-First Synthesis and Thermoresponsive Property of Three-, Four-, and Six-Arm Star-Shaped Poly(N,N-diethylacrylamide)s and Their Block Copolymers with Poly(N,N-dimethylacrylamide). Macromolecules, 2019, 52, 7207-7217.	4.8	17
14	Comb-shaped, temperature-tunable and water-soluble porphyrin-based thermoresponsive copolymer for enhanced photodynamic therapy. Materials Science and Engineering C, 2018, 82, 155-162.	7.3	22
15	Polyacetylenes as Colorimetric and Fluorescent Chemosensor for Anions. Polymer Reviews, 2017, 57, 159-174.	10.9	26
16	Synthesis of water-soluble and thermoresponsive phthalocyanine ended block copolymers as potential photosensitizer. Dyes and Pigments, 2017, 142, 88-99.	3.7	21
17	Synthesis and characterization of Eu(III)-based coordination complexes of modified d-glucosamine and poly(N-isopropylacrylamide). Optical Materials, 2017, 72, 115-121.	3.6	8
18	Synthesis and characterization of Eu(III) complexes of modified d-glucosamine and poly(N-isopropylacrylamide). Materials Science and Engineering C, 2017, 78, 603-608.	7.3	34

#	Article	IF	CITATIONS
19	Well-defined and stable nanomicelles self-assembled from brush cyclic and tadpole copolymer amphiphiles: a versatile smart carrier platform. NPG Asia Materials, 2017, 9, e453-e453.	7.9	36
20	Design and synthesis of thermoresponsive aliphatic polyethers with a tunable phase transition temperature. Polymer Chemistry, 2017, 8, 5698-5707.	3.9	27
21	End-Functionalized Poly(N-isopropylacrylamide) with d-Glucosamine through Different Initiator from C-1 and C-2 Positions via Atom Transfer Radical Polymerization. Materials, 2016, 9, 913.	2.9	4
22	Synthesis and Thermoresponsive Property of Linear, Cyclic, and Star-Shaped Poly(<i>N</i> , <i>N</i> -diethylacrylamide)s Using B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization as Facile End-Functionalization Method. Macromolecules, 2016, 49, 4828-4838.	4.8	24
23	Donor–Acceptor Poly(3â€hexylthiophene)â€ <i>block</i> â€Pendent Poly(isoindigo) with Dual Roles of Charge Transporting and Storage Layer for Highâ€Performance Transistorâ€Type Memory Applications. Advanced Functional Materials, 2016, 26, 2695-2705.	14.9	49
24	B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization of <i>N,N</i> -Disubstituted Acrylamide Using Hydrosilane: Effect of Hydrosilane and Monomer Structures, Polymerization Mechanism, and Synthesis of α-End-Functionalized Polyacrylamides. Macromolecules, 2016, 49, 3049-3060.	4.8	24
25	Synthesis of ABBâ \in 2 and ABC star copolymers via a combination of NMRP and ROP reactions. Polymer Chemistry, 2016, 7, 3599-3607.	3.9	11
26	A photo- and thermo-responsive star-shaped diblock copolymer with a porphyrin core prepared via consecutive ATRPs. RSC Advances, 2016, 6, 47912-47918.	3.6	12
27	High-performance stretchable resistive memories using donor–acceptor block copolymers with fluorene rods and pendent isoindigo coils. NPG Asia Materials, 2016, 8, e298-e298.	7.9	40
28	Effect of chain architecture on the phase transition of star and cyclic poly(N-isopropylacrylamide) in water. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2059-2068.	2.1	27
29	Synthesis, morphology, and electrical memory application of oligosaccharide-based block copolymers with π-conjugated pyrene moieties and their supramolecules. Polymer Chemistry, 2016, 7, 1249-1263.	3.9	15
30	Sub-20 nm Microphase-Separated Structures in Hybrid Block Copolymers Consisting of Polycaprolactone and Maltoheptaose. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 635-642.	0.3	8
31	Phosphazene Base-Catalyzed Living Ring-Opening Polymerization System for Substituted Epoxides. Kobunshi Ronbunshu, 2015, 72, 295-305.	0.2	1
32	Influence of Helical Structure on Chiral Recognition of Poly(phenylacetylene)s Bearing Phenylcarbamate Residues of <scp>L</scp> â€Phenylglycinol and Amide Linage as Pendants. Chirality, 2015, 27, 500-506.	2.6	16
33	Diphenyl Phosphateâ€Catalyzed Ringâ€Opening Polymerization of 1,5â€Dioxepanâ€2â€one. Macromolecular Symposia, 2015, 349, 74-84.	0.7	9
34	Synthesis and chiral recognition of helical poly(phenylacetylene)s bearing <scp>l</scp> â€phenylglycinol and its phenylcarbamates as pendants. Journal of Polymer Science Part A, 2015, 53, 809-821.	2.3	21
35	Synthesis of Oligosaccharide-Based Block Copolymers with Pendent π-Conjugated Oligofluorene Moieties and Their Electrical Device Applications. Macromolecules, 2015, 48, 3907-3917.	4.8	28
36	Synthesis of multifunctional poly(1-pyrenemethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 Td (methacrylate)-b-nanofibers for metal ion sensory applications. Polymer Chemistry, 2015, 6, 2327-2336.	poly(N-iso 3.9	propylacrylam 17

nanofibers for metal ion sensory applications. Polymer Chemistry, 2015, 6, 2327-2336.

#	Article	IF	CITATIONS
37	Synthesis of Homopolymers, Diblock Copolymers, and Multiblock Polymers by Organocatalyzed Group Transfer Polymerization of Various Acrylate Monomers. Macromolecules, 2015, 48, 511-519.	4.8	40
38	Synthesis and thermoresponsive properties of four-arm star-shaped poly(N-isopropylacrylamide)s bearing covalent and non-covalent cores. Polymer Chemistry, 2015, 6, 3608-3616.	3.9	26
39	Controlled/Living Ring-Opening Polymerization of Glycidylamine Derivatives Using <i>t</i> -Bu-P ₄ /Alcohol Initiating System Leading to Polyethers with Pendant Primary, Secondary, and Tertiary Amino Groups. Macromolecules, 2015, 48, 3217-3229.	4.8	40
40	B(C ₆ F ₅) ₃ -catalyzed group transfer polymerization of alkyl methacrylates with dimethylphenylsilane through in situ formation of silyl ketene acetal by B(C ₆ F ₅) ₃ -catalyzed 1,4-hydrosilylation of methacrylate monomer. Polymer Chemistry, 2015, 6, 3502-3511.	3.9	21
41	Complex Thin Film Morphologies of Poly(<i>n</i> hexyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 587 Td Macromolecules, 2015, 48, 5816-5833.	(isocyanate 4.8	e)(5k,10k)– 16
42	Rod–coil type miktoarm star copolymers consisting of polyfluorene and polylactide: precise synthesis and structure–morphology relationship. Polymer Chemistry, 2015, 6, 6959-6972.	3.9	11
43	Synthesis of AB block and A ₂ B ₂ and A ₃ B ₃ miktoarm star-shaped copolymers using I‰-end-functionalized poly(methyl methacrylate) with a hydroxyl group prepared by organocatalyzed group transfer polymerization. Polymer Chemistry, 2015, 6, 7841-7850.	3.9	9
44	Organic acids as efficient catalysts for group transfer polymerization of N,N-disubstituted acrylamide with silyl ketene acetal: polymerization mechanism and synthesis of diblock copolymers. Polymer Chemistry, 2015, 6, 6845-6856.	3.9	18
45	Synthesis of end-functionalized poly(methyl methacrylate) by organocatalyzed group transfer polymerization using functional silyl ketene acetals and \hat{l}_{\pm} -phenylacrylates. Polymer Chemistry, 2015, 6, 1830-1837.	3.9	20
46	B(C ₆ F ₅) ₃ -Catalyzed Group Transfer Polymerization of <i>n</i> -Butyl Acrylate with Hydrosilane through In Situ Formation of Initiator by 1,4-Hydrosilylation of <i>n</i> -Butyl Acrylate. ACS Macro Letters, 2014, 3, 1015-1019.	4.8	24
47	Precise synthesis of a rod-coil type miktoarm star copolymer containing poly(n-hexyl isocyanate) and aliphatic polyester. Polymer Chemistry, 2014, 5, 588-599.	3.9	18
48	<i>Bis</i> (4â€nitrophenyl) phosphate as an efficient organocatalyst for ringâ€opening polymerization of βâ€butyrolactone leading to endâ€functionalized and diblock polyesters. Journal of Polymer Science Part A, 2014, 52, 2032-2039.	2.3	31
49	Synthesis of 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-armed star-shaped poly(styrene oxide) Ru(<scp>ii</scp>) complexes by a click-to-chelate approach. Polymer Chemistry, 2014, 5, 4993-5001.	3.9	12
50	Thermoresponsive properties of 3-, 4-, 6-, and 12-armed star-shaped poly[2-(dimethylamino)ethyl methacrylate]s prepared by core-first group transfer polymerization. Polymer Chemistry, 2014, 5, 4701-4709.	3.9	32
51	Synthesis of water-soluble polyisocyanates with the oligo(ethylene glycol) side-chain as new thermoresponsive polymers. Polymer Chemistry, 2014, 5, 1057-1062.	3.9	19
52	Synthesis of \hat{l}_{\pm} , \hat{l}_{∞} -, and \hat{l}_{\pm} , \hat{l}_{∞} -End-Functionalized Poly($\langle i \rangle n \langle l \rangle$ -butyl acrylate)s by Organocatalytic Group Transfer Polymerization Using Functional Initiator and Terminator. Macromolecules, 2014, 47, 5514-5525.	4.8	35
53	Synthesis of Linear, Cyclic, Figure-Eight-Shaped, and Tadpole-Shaped Amphiphilic Block Copolyethers via <i>t</i> -Rou-P ₄ -Catalyzed Ring-Opening Polymerization of Hydrophilic and Hydrophobic Glycidyl Ethers. Macromolecules, 2014, 47, 2853-2863.	4.8	75
54	Diphenyl phosphate/4-dimethylaminopyridine as an efficient binary organocatalyst system for controlled/living ring-opening polymerization of <scp>L</scp> -lactide leading to diblock and end-functionalized poly(<scp>L</scp> -lactide)s. Journal of Polymer Science Part A, 2014, 52, 1047-1054.	2.3	53

#	Article	IF	CITATIONS
55	Synthesis of star poly(N-isopropylacrylamide) with end-group of zinc-porphyrin via ATRP and its photocatalytic activity under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 283, 38-44.	3.9	18
56	Synthesis of endâ€functionalized poly(<i>N</i> à€isopropyl acrylamide) with zinc porphyrin and its photocatalytic activity under visible light. Journal of Applied Polymer Science, 2014, 131, .	2.6	5
57	Rod-Like Amphiphile of Diblock Polyisocyanate Leading to Cylindrical Micelle and Spherical Vesicle in Water. Macromolecules, 2014, 47, 1699-1704.	4.8	21
58	Synthesis and Stereocomplex Formation of Star-Shaped Stereoblock Polylactides Consisting of Poly(<scp>I</scp> -lactide) and Poly(<scp>d</scp> -lactide) Arms. Macromolecules, 2013, 46, 8509-8518.	4.8	103
59	Synthesis and characterization of novel thermoresponsive fluorescence complexes based on copolymers with rare earth ions. Optical Materials, 2013, 35, 2250-2256.	3.6	17
60	Synthesis of miktoarm star copolymer Ru(II) complexes by click-to-chelate approach. Polymer Journal, 2013, 45, 216-225.	2.7	20
61	Synthesis of block and endâ€functionalized polyesters by triflimideâ€catalyzed ringâ€opening polymerization of εâ€caprolactone, 1,5â€dioxepanâ€2â€one, and rac â€lactide. Journal of Polymer Science Part A 2013, 51, 2455-2463.	,2.3	36
62	Synthesis of Star- and Figure-Eight-Shaped Polyethers by <i>t</i> -Bu-P ₄ -Catalyzed Ring-Opening Polymerization of Butylene Oxide. Macromolecules, 2013, 46, 3841-3849.	4.8	56
63	Recent progress in organocatalytic group transfer polymerization. Polymer Chemistry, 2013, 4, 4278.	3.9	100
64	Diphenyl Phosphate as an Efficient Acidic Organocatalyst for Controlled/Living Ring-Opening Polymerization of Trimethylene Carbonates Leading to Block, End-Functionalized, and Macrocyclic Polycarbonates. Macromolecules, 2013, 46, 1772-1782.	4.8	139
65	Synthesis of Helical Poly(phenylacetylene)s with Amide Linkage Bearing <scp>l</scp> -Phenylalanine and <scp>l</scp> -Phenylglycine Ethyl Ester Pendants and Their Applications as Chiral Stationary Phases for HPLC. Macromolecules, 2013, 46, 8406-8415.	4.8	96
66	Influence of stereoregularity and linkage groups on chiral recognition of poly(phenylacetylene) derivatives bearing <scp>L</scp> â€leucine ethyl ester pendants as chiral stationary phases for HPLC. Journal of Polymer Science Part A, 2013, 51, 2271-2278.	2.3	43
67	Multilevel nonvolatile transistor memories using a star-shaped poly((4-diphenylamino)benzyl) Tj ETQq1 1 0.78431	4 rgBT /O\ 7.9	verlock 10 70
68	10 nm Scale Cylinder–Cubic Phase Transition Induced by Caramelization in Sugar-Based Block Copolymers. ACS Macro Letters, 2012, 1, 1379-1382.	4.8	55
69	Synthesis and conformation effects of poly(phenylacetylene)s having chiral and racemic polylactide pendants. Polymer International, 2012, 61, 1158-1162.	3.1	6
70	Synthesis of endâ€functionalized polyethers by phosphazene baseâ€catalyzed ringâ€opening polymerization of 1,2â€butylene oxide and glycidyl ether. Journal of Polymer Science Part A, 2012, 50, 1941-1952.	2.3	76
71	Synthesis of syndiotacticâ€rich starâ€shaped poly(methyl methacrylate) by coreâ€first group transfer polymerization using <i>N</i> à€(trimethylsilyl)bis(trifluoromethanesulfonyl)imide. Journal of Polymer Science Part A, 2012, 50, 3277-3285.	2.3	21
72	Star polymer with crosslinked core and waterâ€soluble poly(<i>N</i> â€hydroxyethylacrylamide)â€arms: Synthesis by armâ€first method using ATRP and characterizations by SECâ€MALS and SAXS measurement in water. Journal of Polymer Science Part A, 2012, 50, 3546-3559.	2.3	5

#	Article	IF	CITATIONS
73	Controlled polymerization of methyl acrylate for highâ€molecularâ€weight polymers by pentafluorophenylbis(triflyl)methaneâ€promoted group transfer polymerization using triisopropylsilyl ketene acetal. Journal of Polymer Science Part A, 2012, 50, 3560-3566.	2.3	35
74	Effect of Counter Anions on Kinetics and Stereoregularity for the Strong Brønsted Acidâ€Promoted Group Transfer Polymerization of <i>N</i> , <i>N</i> à€Dimethylacrylamide. Macromolecular Chemistry and Physics, 2012, 213, 1604-1611.	2,2	19
75	Wellâ€Defined Functional Linear Aliphatic Diblock Copolyethers: A Versatile Linear Aliphatic Polyether Platform for Selective Functionalizations and Various Nanostructures. Advanced Functional Materials, 2012, 22, 5194-5208.	14.9	43
76	Synthesis of star-shaped poly(N-isopropylacrylamide) via atom transfer radical polymerization and its photocatalytic oxidation of Rhodamine B. Macromolecular Research, 2012, 20, 508-514.	2.4	20
77	A hydrophilic unimolecular nanocapsule with cyclodextrin moieties in the core: chemically triggered on-demand release and pH-response. Soft Matter, 2011, 7, 6422.	2.7	9
78	Diphenyl Phosphate as an Efficient Cationic Organocatalyst for Controlled/Living Ring-Opening Polymerization of $\hat{\Gamma}$ -Valerolactone and $\hat{I}\mu$ -Caprolactone. Macromolecules, 2011, 44, 1999-2005.	4.8	272
79	Strict Size Specificity in Colorimetric Anion Detection Based on Poly(phenylacetylene) Receptor Bearing Second Generation Lysine Dendrons. Macromolecules, 2011, 44, 4249-4257.	4.8	48
80	Synthesis of Linear and Star-Shaped Poly[4-(diphenylamino)benzyl methacrylate]s by Group Transfer Polymerization and Their Electrical Memory Device Applications. Macromolecules, 2011, 44, 5168-5177.	4.8	59
81	Organic Superbase as an Efficient Catalyst for Group Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2011, 44, 4641-4647.	4.8	73
82	Synthesis of end-functionalized poly(N-isopropylacrylamide) with group of asymmetrical phthalocyanine via atom transfer radical polymerization and its photocatalytic oxidation of Rhodamine B. Polymer Chemistry, 2011, 2, 2590.	3.9	25
83	Synthesis and characterization of well-defined thermo- and light-responsive diblock copolymers by atom transfer radical polymerization and click chemistry. Polymer Chemistry, 2011, 2, 2068.	3.9	25
84	Synthesis of High Molecular Weight and End-Functionalized Poly(styrene oxide) by Living Ring-Opening Polymerization of Styrene Oxide Using the Alcohol/Phosphazene Base Initiating System. Macromolecules, 2011, 44, 9099-9107.	4.8	72
85	Core-First Synthesis of Three-, Four-, and Six-Armed Star-Shaped Poly(methyl methacrylate)s by Group Transfer Polymerization Using Phosphazene Base. Macromolecules, 2011, 44, 9091-9098.	4.8	65
86	Synthesis and property study on Eu(III) complexes of modified poly(N-isopropylacrylamide). Journal of Materials Science, 2011, 46, 6396-6401.	3.7	6
87	Preparation of superabsorbent hydrogels from poly(aspartic acid) by chemical crosslinking. Polymer Bulletin, 2011, 67, 1285-1292.	3.3	22
88	Syntheses of 3-arm and 4-arm star-branched polystyrene Ru(II) complexes by the click-to-chelate approach. Journal of Polymer Science Part A, 2011, 49, 746-753.	2.3	29
89	Synthesis of novel hyperbranched polymer through cationic ringâ€opening multibranching polymerization of 2â€hydroxymethyloxetane. Journal of Polymer Science Part A, 2011, 49, 2353-2365.	2.3	16
90	Oneâ€pot synthesis of polyrotaxane by clipping and cyclopolymerization of α,ωâ€diethynyl isophthalamide with pyridiniumdicarboxamide chloride. Journal of Polymer Science Part A, 2011, 49, 3184-3192.	2.3	14

#	Article	IF	CITATIONS
91	Synthesis of various endâ€functionalized polyesters by controlled/living ringâ€opening polymerization of lactones using pentafluorophenylbis(triflyl)methane. Journal of Polymer Science Part A, 2011, 49, 3769-3777.	2.3	23
92	Control of the Aggregation Properties of Tris(maltohexaose)â€Linked Porphyrins with an Alkyl Chain. European Journal of Organic Chemistry, 2010, 2010, 663-671.	2.4	31
93	Host–guest complexationâ€ŧriggered chiroptical change of poly(phenylacetylene)s bearing binaphthocrown ether moieties on the main chain. Journal of Polymer Science Part A, 2010, 48, 1197-1206.	2.3	10
94	Pendant structure governed anion sensing property for sulfonamideâ€functionalized poly(phenylacetylene)s bearing various αâ€amino acids. Journal of Polymer Science Part A, 2010, 48, 1683-1689.	2.3	25
95	Precise synthesis of poly(1-adamantyl methacrylate) by atom transfer radical polymerization. Polymer Journal, 2010, 42, 626-631.	2.7	20
96	Hyperbranched 5,6-glucan as reducing sugar ball. Polymer Chemistry, 2010, 1, 82-92.	3.9	13
97	Controlled/Living Ring-Opening Polymerization of δ-Valerolactone Using Triflylimide as an Efficient Cationic Organocatalyst. Macromolecules, 2010, 43, 7090-7094.	4.8	81
98	Thermoresponsive Vesicular Morphologies Obtained by Self-Assemblies of Hybrid Oligosaccharide- <i>block</i> -poly(<i>N</i> -isopropylacrylamide) Copolymer Systems. Langmuir, 2010, 26, 2325-2332.	3.5	88
99	Group Transfer Polymerization of N,N-Dimethylacrylamide Using Nobel Efficient System Consisting of Dialkylamino Silyl Enol Ether as an Initiator and Strong Brønsted Acid as an Organocatalyst. Macromolecules, 2010, 43, 5589-5594.	4.8	49
100	Temperature-Sensitive Association Properties of End-Functionalized Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) in Dilute Aqueous Solutions. Molecular Crystals and Liquid Crystals, 2009, 505, 9/[247]-18/[256].	0.9	1
101	Poly(<i>N</i> â€hydroxyethylacrylamide) Prepared by Atom Transfer Radical Polymerization as a Nonionic, Waterâ€Soluble, and Hydrolysisâ€Resistant Polymer and/or Segment of Block Copolymer with a Wellâ€Defined Molecular Weight. Macromolecular Chemistry and Physics, 2009, 210, 349-358.	2.2	34
102	Aggregation Behavior of Poly(<i>N</i> â€isopropylacrylamide) Semitelechelics with a Perfluoroalkyl Segment in Water ^a . Macromolecular Chemistry and Physics, 2009, 210, 2138-2147.	2.2	8
103	Structural effect of a series of block copolymers consisting of poly(N-isopropylacrylamide) and poly(N-hydroxyethylacrylamide) on thermoresponsive behavior. Reactive and Functional Polymers, 2009, 69, 463-469.	4.1	25
104	Control of thermoresponsive property of urea endâ€functionalized poly(<i>N</i> â€isopropylacrylamide) based on the hydrogen bondâ€assisted selfâ€assembly in water. Journal of Polymer Science Part A, 2009, 47, 6259-6268.	2.3	20
105	LCSTâ€type liquid–liquid and liquid–solid phase transition behaviors of hyperbranched polyglycerol bearing imidazolium salt. Journal of Polymer Science Part A, 2009, 47, 7032-7042.	2.3	20
106	Optical and Chiroptical Output of Anion Recognition Event Using Clustered Sulfonamide Groups Organized on Poly(phenylacetylene) Backbone. Macromolecules, 2009, 42, 3892-3897.	4.8	41
107	Strong Brønsted Acid as a Highly Efficient Promoter for Group Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2009, 42, 8747-8750.	4.8	65
108	Synthesis, thermomorphic characteristics, and fluorescent properties of poly[2,7-(9,9-dihexylfluorene)]-block-poly(N-isopropylacrylamide)-block-poly(N-hydroxyethylacrylamide) rod-coil-coil triblock copolymers. Soft Matter, 2009, 5, 3761.	2.7	55

#	Article	IF	CITATIONS
109	Sizeâ€Selective Encapsulation Property of Unimolecular Reverse Micelle Consisting of Hyperbranched <scp>D</scp> â€Glucan Core and <scp>L</scp> â€Leucine Ethyl Ether Shell. Macromolecular Symposia, 2009, 279, 145-150.	0.7	8
110	Vinyl addition polymerization of norbornene using cyclopentadienylzirconium trichloride activated by isobutylâ€modified methylaluminoxane. Journal of Polymer Science Part A, 2008, 46, 1185-1191.	2.3	12
111	Copolymerization of ethylene and norbornene using cyclopentadienylzirconium trichloride activated by isobutylâ€modified methylaluminoxane. Journal of Polymer Science Part A, 2008, 46, 7411-7418.	2.3	13
112	A Versatile Method for Adjusting Thermoresponsivity: Synthesis and â€~Click' Reaction of an Azido Endâ€Functionalized Poly(<i>Nâ€</i> isopropylacrylamide). Macromolecular Rapid Communications, 2008, 29, 1126-1133.	3.9	72
113	Synthesis of Glycoconjugated Branched Macromolecular Architectures. Polymer Journal, 2008, 40, 383-397.	2.7	25
114	Synthesis, Structure, and Characteristics of Hyperbranched Polyterpene Alcohols. Macromolecules, 2008, 41, 5265-5271.	4.8	16
115	Synthesis and Helicity Induction of Poly(phenylacetylene)s Bearing Crown Ether Pendants. Reversible On-Off Switching of the Induced Helical Chirality Tunable with Temperature. Macromolecular Symposia, 2007, 249-250, 81-85.	0.7	4
116	Thermoresponsive Onâ^'Off Switching of Chiroptical Property Induced in Poly(4 -ethynylbenzo-15-crown-5)/l±-Amino Acid System. Macromolecules, 2006, 39, 4032-4037.	4.8	47
117	Thermoresponsive Property Controlled by End-Functionalization of Poly(N-isopropylacrylamide) with Phenyl, Biphenyl, and Triphenyl Groups. Polymer Journal, 2006, 38, 306-310.	2.7	36
118	Chromatographic Application of 3,4-Di-O-alkyl-(1→6)-2,5-anhydro-D-glucitol for Separation of Alkali and Alkaline Earth Metal Ions. Polymer Journal, 2006, 38, 490-494.	2.7	0
119	Synthesis, Inversion, and Chiral Discrimination of Helical Polymers Based on the Host-guest Complexation. Kobunshi Ronbunshu, 2006, 63, 315-324.	0.2	1
120	Glycoconjugated polymer: Synthesis and characterization of poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 30 Journal of Polymer Science Part A, 2006, 44, 3978-3985.	7 Td (sacc 2.3	haride)-block 15
121	End-functionalization of polystyrene by malto-oligosaccharide generating aggregation-tunable polymeric reverse micelle. Journal of Polymer Science Part A, 2006, 44, 4864-4879.	2.3	25
122	Chiral discrimination of a helically organized crown ether array parallel to the helix axis of polyisocyanate. Journal of Polymer Science Part A, 2006, 44, 325-334.	2.3	27
123	Synthesis of unimolecular reversed micelle consisting of a poly(L-lactide) shell and hyperbranchedD-mannan core. Journal of Polymer Science Part A, 2006, 44, 406-413.	2.3	47
124	Synthesis and thermoresponsive property of end-functionalized poly(N-isopropylacrylamide) with pyrenyl group. Journal of Polymer Science Part A, 2006, 44, 1117-1124.	2.3	117
125	Synthesis of well-defined syndiotactic poly(methyl methacrylate) with low-temperature atom transfer radical polymerization in fluoroalcohol. Journal of Polymer Science Part A, 2006, 44, 1436-1446.	2.3	56
126	Synthesis and Photocrosslinking Reaction of N-Allylcarbamoylmethyl Cellulose Leading to Hydrogel. Polymer Bulletin, 2006, 56, 137-143.	3.3	9

#	Article	IF	CITATIONS
127	Synthesis and Characterization of Cellulose Carbamates Having α-Amino Acid Moieties. Polymer Bulletin, 2005, 55, 317-322.	3.3	7
128	Synthesis of poly(isobutyl-co-2,2,2-trifluoroethyl methacrylate) with 5,10,15,20-tetraphenylporphinato platinum(II) moiety as an oxygen-sensing dye for pressure-sensitive paint. Journal of Polymer Science Part A, 2005, 43, 2997-3006.	2.3	32
129	Synthesis of well-defined AB20-type star polymers with cyclodextrin-core by combination of NMP and ATRP. Journal of Polymer Science Part A, 2005, 43, 4271-4279.	2.3	80
130	Star-shaped polystyrenes with glycoconjugated periphery and interior: Synthesis and entrapment of hydrophilic molecule. Journal of Polymer Science Part A, 2005, 43, 4373-4381.	2.3	10
131	Polymerization of 1,2:5,6-diepithio-3,4-di-O-methyl-D-mannitol, 1,2:5,6-diepithio-3,4-di-O-methyl-L-iditol, and 1,2:5,6-diepithio-3,4-di-O-methyl-allitol using zinc complexes: The regio- and stereoselectivities and asymmetric synthesis of thiosugar polymers. Journal of Polymer Science Part A, 2005, 43, 4118-4125.	2.3	5
132	Metal-cation-induced chiroptical switching for poly(phenylacetylene) bearing a macromolecular ionophore as a graft chain. Journal of Polymer Science Part A, 2005, 43, 5855-5863.	2.3	54
133	Synthesis, Branched Structure, and Solution Property of Hyperbranchedd-Glucan andd-Galactan. Macromolecules, 2005, 38, 4202-4210.	4.8	61
134	Synthesis and Helicity Induction of Poly(phenylacetylene) Derivatives Bearing a Crown Cavity on the Main Chain. Macromolecules, 2005, 38, 9441-9447.	4.8	34
135	Enantiomer-selective radical cyclopolymerization ofrac-2,4-pentanediyl dimethacrylate using a ruthenium-mediated chiral atom transfer radical polymerization initiating system. Journal of Polymer Science Part A, 2004, 42, 4563-4569.	2.3	23
136	Asymmetric radical cyclization of (2S,3S)-2,3-butanediyl, (2S,4S)-2,4-pentanediyl, and (2S,5S)-2,5-hexanediyl bis(4-vinylbenzoate)s as a model reaction for asymmetric cyclocopolymerization. Journal of Polymer Science Part A, 2004, 42, 4671-4681.	2.3	1
137	Synthesis of Hyperbranched Carbohydrate Polymer by Ring-Opening Multibranching Polymerization of 1,4-Anhydroerythritol and 1,4-Anhydro-l-threitol. Macromolecules, 2004, 37, 3113-3119.	4.8	26
138	Synthesis of Star-Shaped Polystyrenes with Glucose in the Chain-End and Core. Macromolecular Symposia, 2004, 217, 29-38.	0.7	1
139	Synthesis of Hyperbranched Polysaccharide by Thermally Induced Cationic Polymerization of 1,6-Anhydrohexopyranose. Macromolecular Symposia, 2004, 217, 39-46.	0.7	13
140	A convenient synthesis of functionalized alkoxyamines as initiators for living free radical polymerization. Polymer Bulletin, 2003, 49, 337-340.	3.3	9
141	Glycoconjugated polymer 6. Synthesis of poly[styrene- block -(styrene- graft -amylose)] via potato phosphorylase-catalyzed polymerization. Polymer Bulletin, 2003, 49, 405-410.	3.3	24
142	Enantiomer-Selective Radical Polymerization of rac-2,4-Pentanediyl Dimethacrylate by 2,2'-Azobisisobutyronitrile/Copper(II) Trifluoromethanesulfonate/Chiral Diamine as Asymmetric Reverse Atom Transfer Radical Polymerization Initiating System. Polymer Journal, 2003, 35, 84-87.	2.7	12
143	Glycoconjugated Polymer. 5. Synthesis and Characterization of a Seven-Arm Star Polystyrene with a \hat{l}^2 -Cyclodextrin Core Based on TEMPO-Mediated Living Radical Polymerization. Macromolecules, 2003, 36, 3914-3920.	4.8	62
144	Synthesis of star-shaped polystyrenes with glucose- and maltohexaose-conjugated core through nitroxide-controlled free-radical polymerization. Macromolecular Symposia, 2002, 181, 95-100.	0.7	3

#	Article	IF	Citations
145	Precision synthesis of(1â†'6)-α-D-glucopyranan by cationic ring-opening polymerization of 1,6-anhydro-2,3,4-tri-O-allyl-β-D-glucopyranose. Macromolecular Symposia, 2002, 181, 101-106.	0.7	3
146	Synthesis of a New Class of High-Molecular-Weight Soluble Poly(amino acid)s by Oxidative Polymerization of Polyfunctional Macromolecules. Macromolecular Rapid Communications, 2002, 23, 698-702.	3.9	13
147	Bulk cyclopolymerization of 1,2:5,6-diepithio-3,4-di-O-methyl-1,2:5,6-tetradeoxy-D-mannitol with quaternary ammonium salts leading to gel-free thiosugar polymer. Journal of Polymer Science Part A, 2002, 40, 965-970.	2.3	4
148	Enantiomer-selective polymerization of (RS)-(phenoxymethyl)thiirane with diethylzinc/L-amino acid. Journal of Polymer Science Part A, 2002, 40, 3443-3448.	2.3	20
149	Glycoconjugated polymer. I. Synthesis and characterization of amphiphilic polystyrenes with glucose, maltose, and maltohexaose as hydrophilic segments. Journal of Polymer Science Part A, 2001, 39, 4061-4067.	2.3	15
150	Glycoconjugated Polymer II. Synthesis of Polystyrene-block-poly(4-vinylbenzyl glucoside) and Polystyrene-block-poly(4-vinylbenzyl maltohexaoside) via 2,2,6,6-Tetramethylpiperidine-1-oxyl-Mediated Living Radical Polymerization Polymer Journal, 2001, 33, 939-945.	2.7	25
151	Chirality Induction in Cyclopolymerization XVI. Synthesis of Optically Active Poly (methyl) Tj ETQq1 1 0.784314 r Having Chiral Pentanediol Polymer Journal, 2001, 33, 946-951.	gBT /Over 2.7	lock 10 Tf 50 2
152	Chirality Induction in Cyclocopolymerization. 13. Structural Effect of 1,3-Diol as Chiral Templates in the Cyclocopolymerization of Bis(4-vinylbenzoate)s with Styrene. Macromolecules, 2000, 33, 3964-3969.	4.8	8
153	Fixed crosslink formation and viscoelasticity of polystyrene networks. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3319-3327.	2.1	2
154	Synthesis and phototoxic property of tetra- and octa-glycoconjugated tetraphenylchlorins. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3543-3548.	2.2	30
155	Chirality Induction in Cyclocopolymerization. 9. Characterization of Chirality Induction during the Cyclocopolymerizations of (2S,3S)-2,3-Butanediyl, (2S,4S)-2,4-Pentanediyl, and (2S,5S)-2,5-Hexanediyl Bis(4-vinylbenzoate)s with Styrene. Macromolecules, 1998, 31, 4403-4409.	4.8	9
156	Chirality Induction in Cyclopolymerization. 8. Cyclocopolymerization of 1,2:5,6-Di-O-isopropylidene-3,4-di-O-methacryloyl-d-mannitol with Styrene. Macromolecules, 1997, 30, 348-353.	4.8	16
157	Deuterium Nuclear Quadrupole Coupling and cisâ^trans Isomerization in Poly(phenylacetylene-d1). Macromolecules, 1997, 30, 1074-1078.	4.8	33
158	Synthesis of end-functionalized (1 â†' 6)-2,5-anhydro-D-glucitols via anionic cyclopolymerization of 1,2:5,6-dianhydro-3,4-di-O-methyl-D-mannitol for preparing graft copolymers. Macromolecular Rapid Communications, 1997, 18, 1041-1048.	3.9	8
159	Chirality induction in cyclopolymerization, 5. Template effect of chiral acyclic 1,2-glycols on the cyclo-copolymerizations of (S)-1,2-propanediyl and (2S,3S)-2,3-butanediyl bis(4-vinylbenzoate)s with styrene. Macromolecular Chemistry and Physics, 1996, 197, 2931-2942.	2.2	12
160	Cationic Copolymerization of Divinyl Ethers with Vinyl Ether. Synthesis and Cation-Binding Property of Copolymer with Benzo-19-Crown-6 Units. Polymer Journal, 1993, 25, 839-845.	2.7	12
161	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 1805-1813.	1.1	9
162	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 343-349.	1.1	13

#	Article	IF	CITATIONS
163	Title is missing!. Die Makromolekulare Chemie, 1991, 192, 1601-1608.	1.1	15
164	Polymeric Chiral Crown Ethers VI. Optical Resolution of α-Amino Acid by Polymers Incorporating 1,3;4,6-Di-O-benzylidene-D-mannitol Residues. Polymer Journal, 1990, 22, 199-205.	2.7	56
165	Synthesis of poly(crown ether)s via cyclopolymerization and their host property Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1990, 48, 1106-1114.	0.1	5
166	Title is missing!. Angewandte Makromolekulare Chemie, 1989, 172, 177-183.	0.2	2
167	Synthesis of Some Tailor-Made Poly(benzo-19-crown-6)s via Cyclopolymerization of Divinyl Ether with Hydrogen lodide/lodine Initiator. Polymer Journal, 1989, 21, 649-653.	2.7	10
168	Title is missing!. Die Makromolekulare Chemie, 1988, 189, 1279-1285.	1.1	20
169	Title is missing!. Die Makromolekulare Chemie, 1988, 189, 2007-2016.	1.1	18
170	Synthesis of polymers with cryptand-like units via cyclopolymerization of divinyl ethers. Die Makromolekulare Chemie Rapid Communications, 1986, 7, 633-637.	1.1	15
171	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1985, 6, 155-161.	1.1	14
172	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1985, 6, 551-555.	1.1	24
173	Synthesis of polymers with crown ether units via cyclopolymerization of diepoxides. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 115-118.	1.1	21
174	Synthesis of polymers with thiacrown ether units via cyclopolymerization of diepisulfides. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 767-770.	1.1	16
175	Studies of the Cyclopolymerization in the Presence of Alkylaluminum Chlorides. VI. Cyclopolymerizations of 2-(o-Allylphenoxy)ethyl Methacrylate and the Higher Homologues in the $11\hat{a}\in^3$ 19-Membered-Ring Region. Polymer Journal, 1982, 14, 509-516.	2.7	8
176	Studies of the Cyclopolymerization in the Presence of Alkylalminum Chlorides. IV. Polymerization of o-Vinylphenyl Acrylate. Polymer Journal, 1979, 11, 7-13.	2.7	2
177	Studies of the Cyclopolymerization in the Presence of Alkylaluminum Chlorides. III. Cyclocopolymerizations of o-Allylphenyl Acrylate and 2-(o-Allylphenoxy)ethyl Acrylate with p-Chlorostyrene. Polymer Journal, 1978, 10, 19-25.	2.7	5
178	Studies of the Cyclopolymerization in the Presence of Alkylaluminum Chlorides. II. Polymerizations of 2-(o-Allylphenoxy)ethyl Acrylate and 4-(o-Allylphenoxy)butyl Acrylate. Polymer Journal, 1976, 8, 495-505.	2.7	10