
Erik SimÃ³n LledÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2235098/publications.pdf Version: 2024-02-01

FDIK SIMÃ3N LIEDÃ3

#	Article	IF	CITATIONS
1	Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research, 2017, 129, 76-101.	1.1	258
2	Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE, 2017, 12, e0171750.	1.1	222
3	Environmental Impact Assessment process for deep-sea mining in â€~the Area'. Marine Policy, 2018, 87, 194-202.	1.5	94
4	Abyssal hills – hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Progress in Oceanography, 2015, 137, 209-218.	1.5	92
5	Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Progress in Oceanography, 2019, 170, 119-133.	1.5	84
6	Ecology of a polymetallic nodule occurrence gradient: Implications for deepâ€sea mining. Limnology and Oceanography, 2019, 64, 1883-1894.	1.6	82
7	Biological effects 26 years after simulated deep-sea mining. Scientific Reports, 2019, 9, 8040.	1.6	81
8	A new method for ecological surveying of the abyss using autonomous underwater vehicle photography. Limnology and Oceanography: Methods, 2014, 12, 795-809.	1.0	76
9	Ecological risk assessment for deep-sea mining. Ocean and Coastal Management, 2019, 176, 24-39.	2.0	73
10	Recommendations for the Standardisation of Open Taxonomic Nomenclature for Image-Based Identifications. Frontiers in Marine Science, 2021, 8, .	1.2	56
11	A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model. Marine Policy, 2017, 84, 193-201.	1.5	51
12	Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance. Biogeosciences, 2018, 15, 4131-4145.	1.3	49
13	Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining. Frontiers in Marine Science, 2018, 5, .	1.2	48
14	Existing environmental management approaches relevant to deep-sea mining. Marine Policy, 2019, 103, 172-181.	1.5	48
15	Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Progress in Oceanography, 2020, 187, 102405.	1.5	44
16	Landscape-scale spatial heterogeneity in phytodetrital cover and megafauna biomass in the abyss links to modest topographic variation. Scientific Reports, 2016, 6, 34080.	1.6	42
17	Environmental Impact Assessments for deep-sea mining: Can we improve their future effectiveness?. Marine Policy, 2020, 114, .	1.5	42
18	A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses. PLoS ONE, 2019, 14, e0218904.	1.1	40

Erik Simã³n Lledã³

#	Article	IF	CITATIONS
19	Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Marine Policy, 2020, 118, .	1.5	39
20	Towards improved monitoring of offshore carbon storage: A real-world field experiment detecting a controlled sub-seafloor CO2 release. International Journal of Greenhouse Gas Control, 2021, 106, 103237.	2.3	39
21	Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion) Tj ETQq1	1 0.78431 1.5	14 rgBT /Over
22	Monitoring mosaic biotopes in a marine conservation zone by autonomous underwater vehicle. Conservation Biology, 2019, 33, 1174-1186.	2.4	28
23	On the impact of Citizen Science-derived data quality on deep learning based classification in marine images. PLoS ONE, 2019, 14, e0218086.	1.1	26
24	Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26Âyears after a sediment disturbance experiment. Progress in Oceanography, 2020, 189, 102446.	1.5	26
25	Fully automated image segmentation for benthic resource assessment of poly-metallic nodules. Methods in Oceanography, 2016, 15-16, 78-89.	1.5	25
26	Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison. Biogeosciences, 2020, 17, 3115-3133.	1.3	24
27	Subtle variation in abyssal terrain induces significant change in benthic megafaunal abundance, diversity, and community structure. Progress in Oceanography, 2020, 186, 102395.	1.5	23
28	Differences in the carbon flows in the benthic food webs of abyssal hill and plain habitats. Limnology and Oceanography, 2017, 62, 1771-1782.	1.6	22
29	Enduring science: Three decades of observing the Northeast Atlantic from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO). Progress in Oceanography, 2021, 191, 102508.	1.5	20
30	Automated classification of fauna in seabed photographs: The impact of training and validation dataset size, with considerations for the class imbalance. Progress in Oceanography, 2021, 196, 102612.	1.5	20
31	Deep-sea sponge aggregations (Pheronema carpenteri) in the Porcupine Seabight (NE Atlantic) potentially degraded by demersal fishing. Progress in Oceanography, 2020, 183, 102189.	1.5	15
32	Giant, highly diverse protists in the abyssal Pacific: vulnerability to impacts from seabed mining and potential for recovery. Communicative and Integrative Biology, 2020, 13, 189-197.	0.6	15
33	Regional Variation in Communities of Demersal Fishes and Scavengers Across the CCZ and Pacific Ocean. Frontiers in Marine Science, 2021, 8, .	1.2	15
34	New species of the xenophyophore genus Aschemonella (Rhizaria: Foraminifera) from areas of the abyssal eastern Pacific licensed for polymetallic nodule exploration. Zoological Journal of the Linnean Society, 2018, 182, 479-499.	1.0	14
35	Detecting the Effects of Deep-Seabed Nodule Mining: Simulations Using Megafaunal Data From the Clarion-Clipperton Zone. Frontiers in Marine Science, 2019, 6, .	1.2	14
36	Abyssal depositâ€feeding rates consistent with the metabolic theory of ecology. Ecology, 2019, 100, e02564.	1.5	14

Erik SimÃ³n LledÃ³

#	Article	IF	CITATIONS
37	Preliminary Observations of the Abyssal Megafauna of Kiribati. Frontiers in Marine Science, 2019, 6, .	1.2	14
38	Xenophyophores (Rhizaria, Foraminifera), including four new species and two new genera, from the western Clarion-Clipperton Zone (abyssal equatorial Pacific). European Journal of Protistology, 2020, 75, 125715.	0.5	14
39	Abundance and morphology of Paleodictyon nodosum, observed at the Clarion-Clipperton Zone. Marine Biodiversity, 2017, 47, 265-269.	0.3	13
40	Megafaunal Ecology of the Western Clarion Clipperton Zone. Frontiers in Marine Science, 2021, 8, .	1.2	13
41	Making marine image data FAIR. Scientific Data, 2022, 9, .	2.4	13
42	First network analysis of interspecific associations of abyssal benthic megafauna reveals potential vulnerability of abyssal hill community. Progress in Oceanography, 2020, 187, 102401.	1.5	9
43	The megafauna community from an abyssal area of interest for mining of polymetallic nodules. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 172, 103530.	0.6	7

44 Investigating the benthic megafauna in the eastern Clarion Clipperton Fracture Zone (north-east) Tj ETQq0 0 0 rgBI /Overlock 10 Tf 50

45	Ranking Color Correction Algorithms Using Cluster Indices. , 2014, , .		4
46	Linkages between sediment thickness, geomorphology and Mn nodule occurrence: New evidence from AUV geophysical mapping in the Clarion-Clipperton Zone. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 179, 103645.	0.6	4