I-Hsiu Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2235004/publications.pdf

Version: 2024-02-01

471509 454955 37 965 17 30 citations h-index g-index papers 39 39 39 1257 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Uremic Toxin-Producing Bacteroides Species Prevail in the Gut Microbiota of Taiwanese CKD Patients: An Analysis Using the New Taiwan Microbiome Baseline. Frontiers in Cellular and Infection Microbiology, 2022, 12, 726256.	3.9	12
2	Hypervirulent Clostridioides difficile RT078 lineage isolates from the river: A potential reservoir for environmental transmission. Journal of Microbiology, Immunology and Infection, 2022, 55, 977-981.	3.1	2
3	Clostridioides difficile spores stimulate inflammatory cytokine responses and induce cytotoxicity in macrophages. Anaerobe, 2021, 70, 102381.	2.1	7
4	Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics, 2021, 13, 1913.	4.5	9
5	<i>Clostridium butyricum</i> therapy for mild-moderate <i>Clostridioides difficile </i> infection and the impact of diabetes mellitus. Bioscience of Microbiota, Food and Health, 2021, 41, 37-44.	1.8	2
6	Functional analysis of Clostridium difficile sortase B reveals key residues for catalytic activity and substrate specificity. Journal of Biological Chemistry, 2020, 295, 3734-3745.	3.4	5
7	Swimming Pool–Associated <i>Vittaforma</i> Like Microsporidia Linked to Microsporidial Keratoconjunctivitis Outbreak, Taiwan. Emerging Infectious Diseases, 2019, 25, 2100-2103.	4.3	8
8	The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in Clostridium difficile. Frontiers in Cellular and Infection Microbiology, 2019, 9, 356.	3.9	17
9	Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions. Science of the Total Environment, 2019, 669, 527-539.	8.0	20
10	Indocyanine Greenâ€"Mediated Photodynamic Therapy Reduces Methicillin-Resistant Staphylococcus aureus Drug Resistance. Journal of Clinical Medicine, 2019, 8, 411.	2.4	30
11	Genetic Relationships among Multidrug-Resistant Salmonella enterica Serovar Typhimurium Strains from Humans and Animals. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	17
12	Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light. Dermatologica Sinica, 2018, 36, 8-15.	0.5	25
13	In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5477-E5486.	7.1	27
14	Prevalence and characterization of enterotoxigenic Bacteroides fragilis and toxigenic Clostridium difficile in a Taipei emergency department. Journal of Microbiology, Immunology and Infection, 2017, 50, 83-89.	3.1	13
15	Antiviral Drugs and Other Therapeutic Options for Dengue Virus Infection. Current Treatment Options in Infectious Diseases, 2017, 9, 185-193.	1.9	2
16	Perceptions of Clostridium difficile infections among infection control professionals in Taiwan. Journal of Microbiology, Immunology and Infection, 2017, 50, 521-526.	3.1	4
17	Veillonella Catalase Protects the Growth of Fusobacterium nucleatum in Microaerophilic and Streptococcus gordonii-Resident Environments. Applied and Environmental Microbiology, 2017, 83, .	3.1	40
18	Immunization with Recombinant TcdB-Encapsulated Nanocomplex Induces Protection against Clostridium difficile Challenge in a Mouse Model. Frontiers in Microbiology, 2017, 8, 1411.	3.5	16

#	Article	IF	Citations
19	Comparative genomic analysis of Clostridium difficile ribotype 027 strains including the newly sequenced strain NCKUH-21 isolated from a patient in Taiwan. Gut Pathogens, 2017, 9, 70.	3.4	6
20	Lauric Acid Is an Inhibitor of Clostridium difficile Growth in Vitro and Reduces Inflammation in a Mouse Infection Model. Frontiers in Microbiology, 2017, 8, 2635.	3.5	61
21	Structural Insights into Substrate Recognition by Clostridium difficile Sortase. Frontiers in Cellular and Infection Microbiology, 2016, 6, 160.	3.9	4
22	Predominance of Clostridium difficile Ribotypes 017 and 078 among Toxigenic Clinical Isolates in Southern Taiwan. PLoS ONE, 2016, 11, e0166159.	2.5	28
23	Lethality of sortase depletion inActinomyces oriscaused by excessive membrane accumulation of a surface glycoprotein. Molecular Microbiology, 2014, 94, 1227-1241.	2.5	45
24	Pilus Gene Pool Variation and the Virulence of Corynebacterium diphtheriae Clinical Isolates during Infection of a Nematode. Journal of Bacteriology, 2013, 195, 3774-3783.	2.2	37
25	Visualization of Gram-positive Bacterial Pili. Methods in Molecular Biology, 2013, 966, 77-95.	0.9	17
26	Pangenomic Study of Corynebacterium diphtheriae That Provides Insights into the Genomic Diversity of Pathogenic Isolates from Cases of Classical Diphtheria, Endocarditis, and Pneumonia. Journal of Bacteriology, 2012, 194, 3199-3215.	2.2	142
27	Structural Determinants of Actinomyces sortase SrtC2 Required for Membrane Localization and Assembly of Type 2 Fimbriae for Interbacterial Coaggregation and Oral Biofilm Formation. Journal of Bacteriology, 2012, 194, 2531-2539.	2.2	25
28	The Crystal Structure Analysis of Group B Streptococcus Sortase C1: A Model for the "Lid―Movement upon Substrate Binding. Journal of Molecular Biology, 2011, 414, 563-577.	4.2	21
29	Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. Microbiology (United Kingdom), 2011, 157, 2433-2444.	1.8	54
30	Preliminary crystallographic study of the <i>Streptococcus agalactiae </i> sortases, sortase A and sortase C1. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1096-1100.	0.7	7
31	Genes involved in the repression of mutacin I production in Streptococcus mutans. Microbiology (United Kingdom), 2009, 155, 551-556.	1.8	19
32	Carbon Catabolite Repression of Type IV Pilus-Dependent Gliding Motility in the Anaerobic Pathogen Clostridium perfringens. Journal of Bacteriology, 2008, 190, 48-60.	2.2	51
33	<i>Clostridium perfringens</i> : Sporulation, Spore Resistance and Germination. Bangladesh Journal of Microbiology, 2008, 24, 1-8.	0.3	5
34	Complementation of a Clostridium perfringens spoOA Mutant with Wild-Type spoOA from Other Clostridium Species. Applied and Environmental Microbiology, 2006, 72, 6388-6393.	3.1	14
35	Inorganic Phosphate Induces Spore Morphogenesis and Enterotoxin Production in the Intestinal Pathogen Clostridium perfringens. Infection and Immunity, 2006, 74, 3651-3656.	2.2	38
36	Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenicClostridium perfringenstype A. FEMS Microbiology Letters, 2004, 233, 233-240.	1.8	82

#	Article	IF	CITATIONS
37	Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiology Letters, 2004, 233, 233-240.	1.8	52