Edward V Prochownik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2234890/publications.pdf Version: 2024-02-01

		53751	60583
106	7,144	45	81
papers	citations	h-index	g-index
112	112	112	8711
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis. Hepatology, 2023, 77, 1499-1511.	3.6	28
2	Ceramide-mediated gut dysbiosis enhances cholesterol esterification and promotes colorectal tumorigenesis in mice. JCI Insight, 2022, 7, .	2.3	18
3	Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells, 2022, 11, 747.	1.8	11
4	Coordinated Cross-Talk Between the Myc and Mlx Networks in Liver Regeneration and Neoplasia. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1785-1804.	2.3	12
5	The IKKβâ€USP30â€ACLY Axis Controls Lipogenesis and Tumorigenesis. Hepatology, 2021, 73, 160-174.	3.6	61
6	Acquired deficiency of peroxisomal dicarboxylic acid catabolism is a metabolic vulnerability in hepatoblastoma. Journal of Biological Chemistry, 2021, 296, 100283.	1.6	6
7	FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death and Differentiation, 2021, 28, 2112-2125.	5.0	17
8	The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells, 2021, 10, 762.	1.8	56
9	Reconciling the Biological and Transcriptional Variability of Hepatoblastoma with Its Mutational Uniformity. Cancers, 2021, 13, 1996.	1.7	6
10	Patient-Derived Mutant Forms of NFE2L2/NRF2 Drive Aggressive Murine Hepatoblastomas. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 199-228.	2.3	14
11	USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Reports, 2021, 37, 110174.	2.9	15
12	The MAP3K13-TRIM25-FBXW7α axis affects c-Myc protein stability and tumor development. Cell Death and Differentiation, 2020, 27, 420-433.	5.0	44
13	Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Molecular Cell, 2020, 77, 138-149.e5.	4.5	63
14	Sequential analysis of transcript expression patterns improves survival prediction in multiple cancers. BMC Cancer, 2020, 20, 297.	1.1	5
15	Myc Is Required for Adaptive β-Cell Replication in Young Mice but Is Not Sufficient in One-Year-Old Mice Fed With a High-Fat Diet. Diabetes, 2019, 68, 1934-1949.	0.3	23
16	Expression patterns of small numbers of transcripts from functionally-related pathways predict survival in multiple cancers. BMC Cancer, 2019, 19, 686.	1.1	8
17	Inhibition of hepatocellular carcinoma by metabolic normalization. PLoS ONE, 2019, 14, e0218186.	1.1	20
18	β-Catenin mutations as determinants of hepatoblastoma phenotypes in mice. Journal of Biological Chemistry, 2019, 294, 17524-17542.	1.6	39

#	Article	IF	CITATIONS
19	Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts. Journal of Biological Chemistry, 2019, 294, 5466-5486.	1.6	22
20	The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Frontiers in Endocrinology, 2018, 9, 129.	1.5	142
21	Diagnostic and prognostic implications of ribosomal protein transcript expression patterns in human cancers. BMC Cancer, 2018, 18, 275.	1.1	61
22	Amplification of Glyceronephosphate O-Acyltransferase and Recruitment of USP30 Stabilize DRP1 to Promote Hepatocarcinogenesis. Cancer Research, 2018, 78, 5808-5819.	0.4	37
23	Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice. Journal of Biological Chemistry, 2018, 293, 14740-14757.	1.6	39
24	Sequential adaptive changes in a c-Myc-driven model of hepatocellular carcinoma. Journal of Biological Chemistry, 2017, 292, 10068-10086.	1.6	57
25	Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. Journal of Biological Chemistry, 2017, 292, 10239-10249.	1.6	87
26	miR-148a inhibits colitis and colitis-associated tumorigenesis in mice. Cell Death and Differentiation, 2017, 24, 2199-2209.	5.0	62
27	Genetic Dissociation of Glycolysis and the TCA Cycle Affects Neither Normal nor Neoplastic Proliferation. Cancer Research, 2017, 77, 5795-5807.	0.4	31
28	MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice. Cell Death and Disease, 2017, 8, e2916-e2916.	2.7	49
29	Ribosomopathy-like properties of murine and human cancers. PLoS ONE, 2017, 12, e0182705.	1.1	29
30	Coordinated Activities of Multiple Myc-dependent and Myc-independent Biosynthetic Pathways in Hepatoblastoma. Journal of Biological Chemistry, 2016, 291, 26241-26251.	1.6	48
31	MicroRNA-Based Screens for Synthetic Lethal Interactions with c-Myc. RNA & Disease (Houston, Tex), 2016, 3, .	1.0	7
32	microRNA-206 impairs c-Myc-driven cancer in a synthetic lethal manner by directly inhibiting MAP3K13. Oncotarget, 2016, 7, 16409-16419.	0.8	25
33	Abnormal lipid processing but normal long-term repopulation potential of <i>mycâ^'/â^'</i> hepatocytes. Oncotarget, 2016, 7, 30379-30395.	0.8	39
34	c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLoS ONE, 2015, 10, e0134049.	1.1	27
35	Small Molecule MYC Inhibitor Conjugated to Integrin-Targeted Nanoparticles Extends Survival in a Mouse Model of Disseminated Multiple Myeloma. Molecular Cancer Therapeutics, 2015, 14, 1286-1294.	1.9	52
36	Perturbation of the c-Myc–Max Protein–Protein Interaction via Synthetic α-Helix Mimetics. Journal of Medicinal Chemistry, 2015, 58, 3002-3024.	2.9	76

#	Article	IF	CITATIONS
37	Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency. Human Molecular Genetics, 2015, 24, 3238-3247.	1.4	53
38	Small-molecule inhibitors of the Myc oncoprotein. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 525-543.	0.9	127
39	A quantitative, surface plasmon resonance-based approach to evaluating DNA binding by the c-Myc oncoprotein and its disruption by small molecule inhibitors. Journal of Biological Methods, 2015, 2, e18.	1.0	17
40	Structurally diverse c-Myc inhibitors share a common mechanism of action involving ATP depletion. Oncotarget, 2015, 6, 15857-15870.	0.8	35
41	Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids. Oncotarget, 2015, 6, 32380-32395.	0.8	45
42	Targeting of the MYCN Protein with Small Molecule c-MYC Inhibitors. PLoS ONE, 2014, 9, e97285.	1.1	74
43	c-Myc Programs Fatty Acid Metabolism and Dictates Acetyl-CoA Abundance and Fate. Journal of Biological Chemistry, 2014, 289, 25382-25392.	1.6	93
44	Discovery of Methyl 4′â€Methylâ€5â€(7â€nitrobenzo[<i>c</i>][1,2,5]oxadiazolâ€4â€yl)â€[1,1′â€bipheny Improved Smallâ€Molecule Inhibitor of câ€Myc–Max Dimerization. ChemMedChem, 2014, 9, 2274-2285.	yl]â€3â€ca 1.6	ırb <u>şş</u> ylate, an
45	Pharmacophore identification of c-Myc inhibitor 10074-G5. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 370-374.	1.0	59
46	Endothelial Progenitors Exist within the Kidney and Lung Mesenchyme. PLoS ONE, 2013, 8, e65993.	1.1	69
47	Rapid In Vitro Derivation of Endothelium Directly From Human Cancer Cells. PLoS ONE, 2013, 8, e77675.	1.1	4
48	Disruption of Myc-Max Heterodimerization with Improved Cell-Penetrating Analogs of the Small Molecule 10074-G5. Oncotarget, 2013, 4, 936-949.	0.8	45
49	Small-molecule inhibitors of dimeric transcription factors: Antagonism of protein–protein and protein–DNA interactions. MedChemComm, 2012, 3, 541.	3.5	27
50	Mitochondrial Structure, Function and Dynamics Are Temporally Controlled by c-Myc. PLoS ONE, 2012, 7, e37699.	1.1	108
51	In Vivo Evolution of Tumor-Derived Endothelial Cells. PLoS ONE, 2012, 7, e37138.	1.1	28
52	Breast Cancer Stem Cell-Like Cells Are More Sensitive to Ionizing Radiation than Non-Stem Cells: Role of ATM. PLoS ONE, 2012, 7, e50423.	1.1	28
53	Phenotypic Screening Reveals Topoisomerase I as a Breast Cancer Stem Cell Therapeutic Target. Oncotarget, 2012, 3, 998-1010.	0.8	14
54	Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2011, 208, 1595-1603.	4.2	104

#	Article	IF	CITATIONS
55	In Vitro Cytotoxicity and In Vivo Efficacy, Pharmacokinetics, and Metabolism of 10074-G5, a Novel Small-Molecule Inhibitor of c-Myc/Max Dimerization. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 715-727.	1.3	96
56	Endothelialâ€like cells derived directly from human tumor xenografts. International Journal of Cancer, 2010, 127, 2268-2278.	2.3	17
57	Permanently Blocked Stem Cells Derived From Breast Cancer Cell Lines. Stem Cells, 2010, 28, 1008-1018.	1.4	47
58	Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts. PLoS ONE, 2010, 5, e13717.	1.1	19
59	Widespread Genomic Instability Mediated by a Pathway Involving Glycoprotein Ibα and Aurora B Kinase. Journal of Biological Chemistry, 2010, 285, 13183-13192.	1.6	9
60	Therapeutic Targeting of Myc. Genes and Cancer, 2010, 1, 650-659.	0.6	135
61	c-Myc Is Required for the ChREBP-Dependent Activation of Glucose-Responsive Genes. Molecular Endocrinology, 2010, 24, 1274-1286.	3.7	46
62	Regulation of Reactive Oxygen Species Homeostasis by Peroxiredoxins and c-Myc. Journal of Biological Chemistry, 2009, 284, 6520-6529.	1.6	73
63	Modularity of the Oncoprotein-like Properties of Platelet Glycoprotein Ibα. Journal of Biological Chemistry, 2009, 284, 1410-1418.	1.6	8
64	Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc–Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemotherapy and Pharmacology, 2009, 63, 615-625.	1.1	101
65	Multiple Independent Binding Sites for Small-Molecule Inhibitors on the Oncoprotein c-Myc. Journal of the American Chemical Society, 2009, 131, 7390-7401.	6.6	193
66	Discovery of Novel Mycâ^'Max Heterodimer Disruptors with a Three-Dimensional Pharmacophore Model. Journal of Medicinal Chemistry, 2009, 52, 1247-1250.	2.9	81
67	Structural Rationale for the Coupled Binding and Unfolding of the c-Myc Oncoprotein by Small Molecules. Chemistry and Biology, 2008, 15, 1149-1155.	6.2	151
68	c-Myc: Linking Transformation and Genomic Instability. Current Molecular Medicine, 2008, 8, 446-458.	0.6	110
69	The High-Mobility Group A1 Gene Up-Regulates Cyclooxygenase 2 Expression in Uterine Tumorigenesis. Cancer Research, 2007, 67, 3998-4004.	0.4	76
70	The Ever Expanding Role for c-Myc in Promoting Genomic Instability. Cell Cycle, 2007, 6, 1024-1029.	1.3	62
71	c-Myc-mediated genomic instability proceeds via a megakaryocytic endomitosis pathway involving Gp1bÂ. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3490-3495.	3.3	19
72	Improved low molecular weight Myc-Max inhibitors. Molecular Cancer Therapeutics, 2007, 6, 2399-2408.	1.9	177

Edward V Prochownik

#	Article	IF	CITATIONS
73	A Functional Hierarchy for c-Myc Target Genes? Lessons from MT-MC1. Cell Cycle, 2006, 5, 392-393.	1.3	8
74	The Negative c-Myc Target Onzin Affects Proliferation and Apoptosis via Its Obligate Interaction with Phospholipid Scramblase I. Molecular and Cellular Biology, 2006, 26, 3401-3413.	1.1	47
75	Regulation of reactive oxygen species, DNA damage and c-Myc function by peroxiredoxin 1. Oncogene, 2005, 24, 8038-8050.	2.6	205
76	Onzin, a c-Myc-repressed target, promotes survival and transformation by modulating the Akt–Mdm2–p53 pathway. Oncogene, 2005, 24, 7524-7541.	2.6	95
77	C-Myc–Independent Restoration of Multiple Phenotypes by Two C-Myc Target Genes with Overlapping Functions. Cancer Research, 2005, 65, 2097-2107.	0.4	61
78	Deregulation of common genes by c-Myc and its direct target, MT-MC1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18968-18973.	3.3	26
79	Cyclin B1 Is a Critical Target of RhoB in the Cell Suicide Program Triggered by Farnesyl Transferase Inhibition. Cancer Research, 2004, 64, 8389-8396.	0.4	22
80	c-Myc as a therapeutic target in cancer. Expert Review of Anticancer Therapy, 2004, 4, 289-302.	1.1	86
81	Low molecular weight inhibitors of Myc–Max interaction and function. Oncogene, 2003, 22, 6151-6159.	2.6	382
82	The CCL6 chemokine is differentially regulated by c-Myc and L-Myc, and promotes tumorigenesis and metastasis. Cancer Research, 2003, 63, 2923-32.	0.4	20
83	Myc Target in Myeloid Cells-1, a Novel c-Myc Target, Recapitulates Multiple c-Myc Phenotypes. Journal of Biological Chemistry, 2002, 277, 19998-20010.	1.6	28
84	Pag, a Putative Tumor Suppressor, Interacts with the Myc Box II Domain of c-Myc and Selectively Alters Its Biological Function and Target Gene Expression. Journal of Biological Chemistry, 2002, 277, 43175-43184.	1.6	117
85	Mmip-2/Rnf-17 enhances c-Myc function and regulates some target genes in common with glucocorticoid hormones. Oncogene, 2001, 20, 2908-2917.	2.6	17
86	Dynamic in vivo interactions among Myc network members. Oncogene, 2001, 20, 4650-4664.	2.6	30
87	Genetic dissection of c-myc apoptotic pathways. Oncogene, 2000, 19, 3200-3212.	2.6	56
88	C-myc overexpression and p53 loss cooperate to promote genomic instability. Oncogene, 1999, 18, 1177-1184.	2.6	128
89	Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene, 1999, 18, 3564-3573.	2.6	109
90	MYC oncogenes and human neoplastic disease. Oncogene, 1999, 18, 3004-3016.	2.6	1,049

Edward V Prochownik

#	Article	IF	CITATIONS
91	Mmip-2, a novel RING finger protein that interacts with mad members of the Myc oncoprotein network. Oncogene, 1999, 18, 6621-6634.	2.6	22
92	Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc. Oncogene, 1998, 16, 1149-1159.	2.6	26
93	Lack of transcriptional repression by max homodimers. Oncogene, 1998, 16, 2629-2637.	2.6	17
94	Establishment of an apoptosis-resistant and growth-controllable cell line by transfecting with inducible antisense c-Jun gene. , 1998, 58, 65-72.		24
95	Commonly occurring loss and mutation of theMXI1 gene in prostate cancer. Genes Chromosomes and Cancer, 1998, 22, 295-304.	1.5	72
96	Commonly occurring loss and mutation of the MXI1 gene in prostate cancer. Genes Chromosomes and Cancer, 1998, 22, 295-304.	1.5	4
97	Novel Regulation of the Helix-Loop-Helix Protein Id1 by S5a, a Subunit of the 26 S Proteasome. Journal of Biological Chemistry, 1997, 272, 19140-19151.	1.6	31
98	Differential Interactions of Id Proteins with Basic-Helix-Loop-Helix Transcription Factors. Journal of Biological Chemistry, 1997, 272, 19785-19793.	1.6	200
99	Distinct Roles for MAX Protein Isoforms in Proliferation and Apoptosis. Journal of Biological Chemistry, 1997, 272, 17416-17424.	1.6	39
100	Mutation of the MXI1 gene in prostate cancer. Nature Genetics, 1995, 9, 249-255.	9.4	208
101	Assignment of the Human MAD and MXI1 Genes to Chromosomes 2p12-p13 and 10q24-q25. Genomics, 1994, 23, 282-285.	1.3	42
102	Embryonal rhabdomyosarcoma of the ampulla of vater with long-term survival following pancreaticoduodenectomy. Journal of Pediatric Surgery, 1990, 25, 1256-1258.	0.8	31
103	Relationship between an enhancer element in the human antithrombin III gene and an immunoglobulin light-chain gene enhancer. Nature, 1985, 316, 845-848.	13.7	55
104	Molecular Heterogeneity of Inherited Antithrombin III Deficiency. New England Journal of Medicine, 1983, 308, 1549-1552.	13.9	128
105	Inhibition of reverse transcriptases of primate type C viruses by 7S immunoglobulin from patients with leukaemia. Nature, 1976, 260, 64-67.	13.7	37
106	Liquid biopsies and the promise of what might(o) be. Journal of Medical Artificial Intelligence, 0, 2, 17-17.	1.1	1