Kun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2234631/publications.pdf Version: 2024-02-01

KUN ZHANC

#	Article	IF	CITATIONS
1	Tin-cobalt bimetals in 2D leaf-like MOF-derived carbon for advanced lithium storage applications. Electrochimica Acta, 2022, 410, 140036.	2.6	5
2	Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors. RSC Advances, 2022, 12, 12590-12599.	1.7	5
3	High-rate supercapacitor using magnetically aligned graphene. Journal of Power Sources, 2021, 482, 228995.	4.0	34
4	Edge Engineering in 2D Molybdenum Disulfide: Simultaneous Regulation of Lithium and Polysulfides for Stable Lithium–Sulfur Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100053.	2.8	6
5	Biomineralization-inspired: rapid preparation of a silicon-based composite as a high-performance lithium-ion battery anode. Journal of Materials Chemistry A, 2021, 9, 11614-11622.	5.2	10
6	Effect of porous structural properties on lithium-ion and sodium-ion storage: illustrated by the example of a micro-mesoporous graphene _{1â^'<i>x</i>} (MoS ₂) _{<i>x</i>} anode. RSC Advances, 2021, 11, 34152-34159.	1.7	8
7	A highly stable SiOx-based anode enabled by self-assembly with polyelectrolyte. Electrochimica Acta, 2020, 360, 136958.	2.6	6
8	Reduced graphene oxide decorated with crystallized cobalt borate nanoparticles as an anode in lithium ion capacitors. Chemical Physics Letters, 2020, 759, 137964.	1.2	3
9	A sandwich-like silicon–carbon composite prepared by surface-polymerization for rapid lithium-ion storage. Nano Energy, 2020, 78, 105341.	8.2	54
10	A green strategy for the preparation of a honeycomb-like silicon composite with enhanced lithium storage properties. Nanoscale, 2020, 12, 12849-12855.	2.8	7
11	Layered Siliconâ€Based Nanosheets as Electrode for 4 V Highâ€Performance Supercapacitor. Advanced Functional Materials, 2020, 30, 2002200.	7.8	42
12	Highly reversible lithium storage in a conversion-type ZnCo ₂ O ₄ anode promoted by NiCl _{2â^'x} F _x hydrate. Journal of Materials Chemistry A, 2020, 8, 2356-2363.	5.2	11
13	Porous carbon nanotube/graphene composites for high-performance supercapacitors. Chemical Physics Letters, 2018, 693, 60-65.	1.2	36
14	Production of Few-Layer Graphene via Enhanced High-Pressure Shear Exfoliation in Liquid for Supercapacitor Applications. ACS Applied Nano Materials, 2018, 1, 2877-2884.	2.4	33
15	Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale, 2017, 9, 2585-2595.	2.8	156
16	Hybrid lithium-ion capacitors with asymmetric graphene electrodes. Journal of Materials Chemistry A, 2017, 5, 13601-13609.	5.2	85
17	Unique interconnected graphene/SnO ₂ nanoparticle spherical multilayers for lithium-ion battery applications. Nanoscale, 2017, 9, 4439-4444.	2.8	53
18	Enlarging energy density of supercapacitors using unequal graphene electrodes and ionic liquid electrolyte. Electrochimica Acta, 2017, 258, 1053-1058.	2.6	25

Kun Zhang

#	Article	IF	CITATIONS
19	Interactions between Graphene and Ionic Liquid Electrolyte in Supercapacitors. Electrochimica Acta, 2016, 197, 84-91.	2.6	59
20	Ionic liquid modified graphene for supercapacitors with high rate capability. Electrochimica Acta, 2015, 176, 1441-1446.	2.6	47
21	Tin Oxide Microspheres with Exposed {101} Facets for Dyeâ€sensitized Solar Cells: Enhanced Photocurrent and Photovoltage. ChemSusChem, 2014, 7, 172-178.	3.6	14
22	Highâ€Performance, Transparent, Dyeâ€5ensitized Solar Cells for Seeâ€Through Photovoltaic Windows. Advanced Energy Materials, 2014, 4, 1301966.	10.2	88
23	Novel Nearâ€Infrared Squaraine Sensitizers for Stable and Efficient Dyeâ€5ensitized Solar Cells. Advanced Functional Materials, 2014, 24, 3059-3066.	7.8	77
24	Band alignment by ternary crystalline potential-tuning interlayer for efficient electron injection in quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 7004-7014.	5.2	26
25	Retarding the crystallization of PbI ₂ for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy and Environmental Science, 2014, 7, 2934-2938.	15.6	807
26	A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy and Environmental Science, 2014, 7, 2963-2967.	15.6	668
27	Highly compact TiO ₂ layer for efficient hole-blocking in perovskite solar cells. Applied Physics Express, 2014, 7, 052301.	1.1	199
28	Coordinated shifts of interfacial energy levels: insight into electron injection in highly efficient dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 3637.	15.6	31
29	Improvement of spectral response by co-sensitizers for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 4812.	5.2	76
30	Unexpected effect of dye's molar extinction coefficient on performance of back contact dye-sensitized solar cells. Applied Physics Letters, 2012, 101, 233905.	1.5	2
31	A Novel Organic Sensitizer Combined with a Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 2532-2535.	2.4	26
32	Surface ion transfer growth of ternary CdS1â^'xSex quantum dots and their electron transport modulation. Nanoscale, 2012, 4, 7690.	2.8	36
33	Transient charge-masking effect of applied voltage on electrospinning of pure chitosan nanofibers from aqueous solutions. Science and Technology of Advanced Materials, 2012, 13, 015003.	2.8	39
34	A novel shortened electrospun nanofiber modified with a â€~concentrated' polymer brush. Science and Technology of Advanced Materials, 2011, 12, 015003.	2.8	23
35	Effects of 4-tert-butylpyridine on the quasi-Fermi levels of TiO2 films in the presence of different cations in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 19310.	1.3	33
36	A novel shortened electrospun nanofiber modified with a 'concentrated' polymer brush. Science and Technology of Advanced Materials, 2011, 12, 015003.	2.8	2