List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2234379/publications.pdf Version: 2024-02-01

FEL HUANC

#	Article	IF	CITATIONS
1	Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical Reviews, 2018, 118, 3447-3507.	23.0	1,371
2	Interface Engineering for Organic Electronics. Advanced Functional Materials, 2010, 20, 1371-1388.	7.8	859
3	Achieving over 16% efficiency for single-junction organic solar cells. Science China Chemistry, 2019, 62, 746-752.	4.2	817
4	A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. Journal of the American Chemical Society, 2015, 137, 3886-3893.	6.6	788
5	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	15.6	769
6	Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy and Environmental Science, 2012, 5, 8208.	15.6	616
7	Donor–Acceptor Conjugated Polymer Based on Naphtho[1,2- <i>c</i> :5,6- <i>c</i>]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 2011, 133, 9638-9641.	6.6	598
8	Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene. Chemistry of Materials, 2004, 16, 708-716.	3.2	574
9	Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer. Journal of the American Chemical Society, 2011, 133, 8416-8419.	6.6	540
10	n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 2016, 138, 2004-2013.	6.6	525
11	Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. Journal of Materials Chemistry, 2012, 22, 10416.	6.7	462
12	Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. Chemical Society Reviews, 2013, 42, 9071.	18.7	437
13	Deep Absorbing Porphyrin Small Molecule for High-Performance Organic Solar Cells with Very Low Energy Losses. Journal of the American Chemical Society, 2015, 137, 7282-7285.	6.6	436
14	Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010, 39, 2500.	18.7	431
15	High-Performance Ternary Organic Solar Cell Enabled by a Thick Active Layer Containing a Liquid Crystalline Small Molecule Donor. Journal of the American Chemical Society, 2017, 139, 2387-2395.	6.6	404
16	Materials and Devices toward Fully Solution Processable Organic Light-Emitting Diodes. Chemistry of Materials, 2011, 23, 326-340.	3.2	399
17	Terthiophene-Based D–A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2015, 137, 14149-14157.	6.6	386
18	A Wellâ€Mixed Phase Formed by Two Compatible Nonâ€Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Advanced Materials, 2021, 33, e2101733.	11.1	354

#	Article	IF	CITATIONS
19	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
20	Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy and Environmental Science, 2017, 10, 1243-1251.	15.6	346
21	Development of New Conjugated Polymers with Donorâ~'Ï€-Bridgeâ^'Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society, 2009, 131, 13886-13887.	6.6	335
22	Allâ€Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxaneâ€Functionalized Side Chains with Efficiency over 10%. Advanced Materials, 2017, 29, 1703906.	11.1	332
23	High-Efficiency Polymer Solar Cells via the Incorporation of an Amino-Functionalized Conjugated Metallopolymer as a Cathode Interlayer. Journal of the American Chemical Society, 2013, 135, 15326-15329.	6.6	321
24	High-Efficiency, Environment-Friendly Electroluminescent Polymers with Stable High Work Function Metal as a Cathode:Â Green- and Yellow-Emitting Conjugated Polyfluorene Polyelectrolytes and Their Neutral Precursors. Journal of the American Chemical Society, 2004, 126, 9845-9853.	6.6	309
25	All-solution processed polymer light-emitting diode displays. Nature Communications, 2013, 4, 1971.	5.8	287
26	A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy and Environmental Science, 2019, 12, 157-163.	15.6	287
27	Domain Purity, Miscibility, and Molecular Orientation at Donor/Acceptor Interfaces in High Performance Organic Solar Cells: Paths to Further Improvement. Advanced Energy Materials, 2013, 3, 864-872.	10.2	283
28	Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nature Energy, 2018, 3, 1051-1058.	19.8	281
29	14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy, 2020, 72, 104718.	8.2	280
30	Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501534.	10.2	278
31	A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. Journal of Materials Chemistry A, 2018, 6, 395-403.	5.2	272
32	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule, 2020, 4, 407-419.	11.7	272
33	Multiâ€Lengthâ€Scale Morphologies Driven by Mixed Additives in Porphyrinâ€Based Organic Photovoltaics. Advanced Materials, 2016, 28, 4727-4733.	11.1	251
34	A Novel Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c′</i>]Bis([1,2,5]Thiadiazole)â€Based Narrowâ€Bandgap Ï€â€Conju Polymer with Power Conversion Efficiency Over 10%. Advanced Materials, 2016, 28, 9811-9818.	igated 11.1	230
35	Highâ€Efficiency Allâ€Polymer Solar Cells Based on a Pair of Crystalline Lowâ€Bandgap Polymers. Advanced Materials, 2014, 26, 7224-7230.	11.1	228
36	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	11.7	228

#	Article	IF	CITATIONS
37	Single-Component Non-halogen Solvent-Processed High-Performance Organic Solar Cell Module with Efficiency over 14%. Joule, 2020, 4, 2004-2016.	11.7	225
38	Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes. Journal of Materials Chemistry, 2010, 20, 2617.	6.7	222
39	Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. Journal of Materials Chemistry, 2012, 22, 1206-1211.	6.7	222
40	Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. Journal of the American Chemical Society, 2018, 140, 8934-8943.	6.6	218
41	Dual Interfacial Modifications Enable High Performance Semitransparent Perovskite Solar Cells with Large Open Circuit Voltage and Fill Factor. Advanced Energy Materials, 2017, 7, 1602333.	10.2	209
42	Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction Polymer Solar Cells Based on PBDTTTâ€Câ€T/PC ₇₁ BM. Advanced Materials, 2014, 26, 4043-4049.	11.1	203
43	Dibenzothiophene Dioxide Based Conjugated Microporous Polymers for Visible-Light-Driven Hydrogen Production. ACS Catalysis, 2018, 8, 8590-8596.	5.5	202
44	A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor. Chemistry of Materials, 2009, 21, 2598-2600.	3.2	191
45	Interface design for high-efficiency non-fullerene polymer solar cells. Energy and Environmental Science, 2017, 10, 1784-1791.	15.6	187
46	Regioregular narrow-bandgap-conjugated polymers for plastic electronics. Nature Communications, 2017, 8, 14047.	5.8	182
47	High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors. Science China Chemistry, 2021, 64, 1192-1199.	4.2	181
48	Heat-Insulating Multifunctional Semitransparent Polymer Solar Cells. Joule, 2018, 2, 1816-1826.	11.7	173
49	Walnut-like Porous Core/Shell TiO ₂ with Hybridized Phases Enabling Fast and Stable Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 10652-10663.	4.0	169
50	Conjugated Fluorene and Silole Copolymers:  Synthesis, Characterization, Electronic Transition, Light Emission, Photovoltaic Cell, and Field Effect Hole Mobility. Macromolecules, 2005, 38, 2253-2260.	2.2	161
51	Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy and Environmental Science, 2013, 6, 3022.	15.6	158
52	Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. Journal of Materials Chemistry, 2008, 18, 4495.	6.7	157
53	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
54	Water/alcohol soluble conjugated polymers for the interface engineering of highly efficient polymer light-emitting diodes and polymer solar cells. Chemical Communications, 2015, 51, 5572-5585.	2.2	156

#	Article	IF	CITATIONS
55	Highâ€Performance Polymer Tandem Solar Cells Employing a New nâ€Type Conjugated Polymer as an Interconnecting Layer. Advanced Materials, 2016, 28, 4817-4823.	11.1	156
56	Highly Efficient Inverted Polymer Solar Cells Based on a Cross-linkable Water-/Alcohol-Soluble Conjugated Polymer Interlayer. ACS Applied Materials & Interfaces, 2014, 6, 10429-10435.	4.0	155
57	Improving Film Formation and Photovoltage of Highly Efficient Invertedâ€Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers. Advanced Energy Materials, 2016, 6, 1502021.	10.2	152
58	Highâ€Performance Largeâ€Area Organic Solar Cells Enabled by Sequential Bilayer Processing via Nonhalogenated Solvents. Advanced Energy Materials, 2019, 9, 1802832.	10.2	152
59	A Universal Fluorinated Polymer Acceptor Enables All-Polymer Solar Cells with >15% Efficiency. ACS Energy Letters, 2020, 5, 3702-3707.	8.8	152
60	Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nature Photonics, 2022, 16, 505-511.	15.6	152
61	Reducing Voltage Losses in the A-DA′D-A Acceptor-Based Organic Solar Cells. CheM, 2020, 6, 2147-2161.	5.8	150
62	Highâ€Performance Nonfullerene Polymer Solar Cells based on Imideâ€Functionalized Wideâ€Bandgap Polymers. Advanced Materials, 2017, 29, 1606396.	11.1	147
63	15% Efficiency Tandem Organic Solar Cell Based on a Novel Highly Efficient Wideâ€Bandgap Nonfullerene Acceptor with Low Energy Loss. Advanced Energy Materials, 2019, 9, 1803657.	10.2	146
64	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie - International Edition, 2021, 60, 10137-10146.	7.2	145
65	Asymmetric Alkoxy and Alkyl Substitution on Nonfullerene Acceptors Enabling Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003141.	10.2	144
66	Plasmonic Electrically Functionalized TiO ₂ for Highâ€Performance Organic Solar Cells. Advanced Functional Materials, 2013, 23, 4255-4261.	7.8	138
67	Effect of Fluorine Content in Thienothiophene-Benzodithiophene Copolymers on the Morphology and Performance of Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3009-3017.	3.2	136
68	Thick Film Polymer Solar Cells Based on Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i>]bis[1,2,5]thiadiazole Conjugated Polymers with Efficiency over 11%. Advanced Energy Materials, 2017, 7, 1700944.	10.2	136
69	Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nature Communications, 2020, 11, 2871.	5.8	131
70	A Vinyleneâ€Linkerâ€Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables Highâ€Performance Allâ€Polymer Solar Cells with Over 17% Efficiency. Advanced Materials, 2022, 34, e2200361.	11.1	131
71	Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nature Communications, 2019, 10, 4100.	5.8	129
72	Synthesis of Quinoxaline-Based Donorâ^'Acceptor Narrow-Band-Gap Polymers and Their Cyclized Derivatives for Bulk-Heterojunction Polymer Solar Cell Applications. Macromolecules, 2011, 44, 894-901.	2.2	127

#	Article	IF	CITATIONS
73	A Series of New Mediumâ€Bandgap Conjugated Polymers Based on Naphtho[1,2â€c:5,6â€c]bis(2â€octylâ€{1,2,3]triazole) for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 3683-3688.	11.1	125
74	A Difluorobenzoxadiazole Building Block for Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 1868-1873.	11.1	125
75	Creation of Bifunctional Materials: Improve Electronâ€Transporting Ability of Light Emitters Based on AlEâ€Active 2,3,4,5â€Tetraphenylsiloles. Advanced Functional Materials, 2014, 24, 3621-3630.	7.8	123
76	Toward Solution-Processed High-Performance Polymer Solar Cells: from Material Design to Device Engineering. Chemistry of Materials, 2017, 29, 141-148.	3.2	122
77	A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy and Environmental Science, 2021, 14, 5009-5016.	15.6	119
78	Efficient Organic Solar Cells with Extremely High Openâ€Circuit Voltages and Low Voltage Losses by Suppressing Nonradiative Recombination Losses. Advanced Energy Materials, 2018, 8, 1801699.	10.2	117
79	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
80	Solutionâ€Processed Polymer Solar Cells with over 17% Efficiency Enabled by an Iridium Complexation Approach. Advanced Energy Materials, 2020, 10, 2000590.	10.2	117
81	Conjugated zwitterionic polyelectrolyte-based interface modification materials for high performance polymer optoelectronic devices. Chemical Science, 2013, 4, 1298.	3.7	116
82	Highâ€Performance Thickâ€Film Allâ€Polymer Solar Cells Created Via Ternary Blending of a Novel Wideâ€Bandgap Electronâ€Donating Copolymer. Advanced Energy Materials, 2018, 8, 1703085.	10.2	115
83	Highly Efficient Electron Injection from Indium Tin Oxide/Cross-Linkable Amino-Functionalized Polyfluorene Interface in Inverted Organic Light Emitting Devices. Chemistry of Materials, 2011, 23, 4870-4876.	3.2	112
84	Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule, 2022, 6, 647-661.	11.7	112
85	Highâ€Performance Polymer Solar Cells with Electrostatic Layerâ€byâ€Layer Selfâ€Assembled Conjugated Polyelectrolytes as the Cathode Interlayer. Advanced Materials, 2015, 27, 3607-3613.	11.1	111
86	Ambient Processable and Stable Allâ€Polymer Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1806747.	7.8	111
87	Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells. Joule, 2020, 4, 1790-1805.	11.7	110
88	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie - International Edition, 2020, 59, 20385-20389.	7.2	110
89	Towards a bright future: polymer solar cells with power conversion efficiencies over 10%. Science China Chemistry, 2017, 60, 571-582.	4.2	109
90	Heterometallic Seedâ€Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heatâ€Resistant Zinc Batteries. Advanced Functional Materials, 2021, 31, 2101607.	7.8	109

#	Article	IF	CITATIONS
91	Conjugated Zwitterionic Polyelectrolytes and Their Neutral Precursor as Electron Injection Layer for Highâ€Performance Polymer Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 1665-1669.	11.1	108
92	Improved Performance of Ternary Polymer Solar Cells Based on A Nonfullerene Electron Cascade Acceptor. Advanced Energy Materials, 2017, 7, 1602127.	10.2	108
93	Rational Anode Engineering Enables Progresses for Different Types of Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2100492.	10.2	108
94	Highly Efficient Inverted Polymer Solar Cells Based on an Alcohol Soluble Fullerene Derivative Interfacial Modification Material. Chemistry of Materials, 2012, 24, 1682-1689.	3.2	106
95	Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution. IScience, 2019, 13, 33-42.	1.9	105
96	Amino <i>N</i> â€Oxide Functionalized Conjugated Polymers and their Aminoâ€Functionalized Precursors: New Cathode Interlayers for Highâ€Performance Optoelectronic Devices. Advanced Functional Materials, 2012, 22, 2846-2854.	7.8	101
97	Tailoring Regioisomeric Structures of π-Conjugated Polymers Containing Monofluorinated π-Bridges for Highly Efficient Polymer Solar Cells. ACS Energy Letters, 2020, 5, 2087-2094.	8.8	101
98	Efficient non-fullerene polymer solar cells enabled by tetrahedron-shaped core based 3D-structure small-molecular electron acceptors. Journal of Materials Chemistry A, 2015, 3, 13632-13636.	5.2	100
99	Nonfused Nonfullerene Acceptors with an A–D–A′–D–A Framework and a Benzothiadiazole Core for High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 16531-16540.	4.0	100
100	Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. Advanced Energy Materials, 2018, 8, 1701942.	10.2	99
101	Polymer Solar Cells with a Lowâ€Temperatureâ€Annealed Sol–Gelâ€Derived MoO _x Film as a Hole Extraction Layer. Advanced Energy Materials, 2012, 2, 523-527.	10.2	97
102	Dopamine Semiquinone Radical Doped PEDOT:PSS: Enhanced Conductivity, Work Function and Performance in Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2000743.	10.2	97
103	A Facile Synthesized Polymer Featuring Bâ€N Covalent Bond and Small Singletâ€Triplet Gap for Highâ€Performance Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8813-8817.	7.2	97
104	Quaternisation-polymerized N-type polyelectrolytes: synthesis, characterisation and application in high-performance polymer solar cells. Materials Horizons, 2017, 4, 88-97.	6.4	93
105	11.2% Allâ€Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability. Advanced Materials, 2018, 30, e1803166.	11.1	92
106	Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent. Advanced Materials, 2021, 33, e2008158.	11.1	90
107	New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells. Nano Energy, 2016, 26, 7-15.	8.2	89
108	Alkyl Chain Length Effects of Polymer Donors on the Morphology and Device Performance of Polymer Solar Cells with Different Acceptors. Advanced Energy Materials, 2019, 9, 1901740.	10.2	88

#	Article	IF	CITATIONS
109	Vertical Composition Distribution and Crystallinity Regulations Enable High-Performance Polymer Solar Cells with >17% Efficiency. ACS Energy Letters, 2020, 5, 3637-3646.	8.8	87
110	Solution processed thick film organic solar cells. Polymer Chemistry, 2015, 6, 8081-8098.	1.9	86
111	Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 42564-42572.	4.0	86
112	High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers. ACS Applied Materials & Interfaces, 2016, 8, 34482-34489.	4.0	85
113	Recent advances in high performance solution processed WOLEDs for solid-state lighting. Journal of Materials Chemistry C, 2016, 4, 10993-11006.	2.7	84
114	Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in Front Sub ell. Advanced Functional Materials, 2021, 31, 2103283.	7.8	84
115	Highâ€Performance Inverted Organic Photovoltaics with Over 1â€Î¼m Thick Active Layers. Advanced Energy Materials, 2014, 4, 1400378.	10.2	83
116	15.4% Efficiency all-polymer solar cells. Science China Chemistry, 2021, 64, 408-412.	4.2	83
117	Ï€â€Extended Conjugated Polymer Acceptor Containing Thienylene–Vinylene–Thienylene Unit for Highâ€Performance Thickâ€Film Allâ€Polymer Solar Cells with Superior Longâ€Term Stability. Advanced Energy Materials, 2021, 11, 2102559.	10.2	83
118	Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy and Environmental Science, 2022, 15, 1563-1572.	15.6	83
119	Selfâ€Doped, nâ€Type Perylene Diimide Derivatives as Electron Transporting Layers for Highâ€Efficiency Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1700232.	10.2	82
120	Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes. Nano Energy, 2019, 60, 775-783.	8.2	82
121	Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy, 2019, 64, 103931.	8.2	81
122	Synthesis of novel triphenylamine-based conjugated polyelectrolytes and their application as hole-transport layers in polymeric light-emitting diodes. Journal of Materials Chemistry, 2006, 16, 2387.	6.7	80
123	Efficient Large Area Organic Solar Cells Processed by Bladeâ€Coating With Single omponent Green Solvent. Solar Rrl, 2018, 2, 1700169.	3.1	79
124	Nearâ€infrared organic photoelectric materials for lightâ€harvesting systems: Organic photovoltaics and organic photodiodes. InformaÄnÃ-Materiály, 2020, 2, 57-91.	8.5	78
125	New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. Nano Energy, 2016, 30, 639-648.	8.2	77
126	Realizing high hydrogen evolution activity under visible light using narrow band gap organic photocatalysts. Chemical Science, 2021, 12, 1796-1802.	3.7	77

#	Article	IF	CITATIONS
127	Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells. RSC Advances, 2015, 5, 775-783.	1.7	76
128	Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy, 2022, 93, 106858.	8.2	71
129	Selfâ€Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction. Advanced Functional Materials, 2021, 31, 2106326.	7.8	70
130	Highâ€Performance Polymer Solar Cells Based on a Wideâ€Bandgap Polymer Containing Pyrrolo[3,4â€ <i>f</i>]benzotriazoleâ€5,7â€dione with a Power Conversion Efficiency of 8.63%. Advanced Science, 2016, 3, 1600032.	5.6	69
131	Novel efficient blue and bluish-green light-emitting polymers with delayed fluorescence. Journal of Materials Chemistry C, 2018, 6, 2690-2695.	2.7	69
132	Recent developments in carbon nitride based films for photoelectrochemical water splitting. Sustainable Energy and Fuels, 2020, 4, 485-503.	2.5	68
133	Waterâ€Soluble Conjugated Molecule for Solarâ€Driven Hydrogen Evolution from Salt Water. Advanced Functional Materials, 2019, 29, 1808156.	7.8	66
134	A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells. Energy and Environmental Science, 2021, 14, 5530-5540.	15.6	66
135	Non-fullerene acceptors based on fused-ring oligomers for efficient polymer solar cells <i>via</i> complementary light-absorption. Journal of Materials Chemistry A, 2017, 5, 23926-23936.	5.2	65
136	Engineering the morphology <i>via</i> processing additives in multiple all-polymer solar cells for improved performance. Journal of Materials Chemistry A, 2018, 6, 10421-10432.	5.2	65
137	Dark Current Reduction Strategy via a Layer-By-Layer Solution Process for a High-Performance All-Polymer Photodetector. ACS Applied Materials & Interfaces, 2019, 11, 8350-8356.	4.0	64
138	Solution-Processed High-Detectivity Near-Infrared Polymer Photodetectors Fabricated by a Novel Low-Bandgap Semiconducting Polymer. Journal of Physical Chemistry C, 2013, 117, 6537-6543.	1.5	63
139	Self-Assembled Conjugated Polymer/Chitosan- <i>graft</i> -Oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by "Turn-On―FRET. ACS Applied Materials & Interfaces, 2017, 9, 22875-22884.	4.0	63
140	Enhanced Photovoltaic Performance of Ternary Polymer Solar Cells by Incorporation of a Narrow-Bandgap Nonfullerene Acceptor. Chemistry of Materials, 2017, 29, 8177-8186.	3.2	63
141	Semitransparent Organic Solar Cells with Efficiency Surpassing 15%. Advanced Energy Materials, 2022, 12, .	10.2	63
142	Crosslinkable Aminoâ€Functionalized Conjugated Polymer as Cathode Interlayer for Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1502563.	10.2	62
143	Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy, 2018, 51, 434-441.	8.2	61
144	Enabling High Efficiency of Hydrocarbonâ€Solvent Processed Organic Solar Cells through Balanced Charge Generation and Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2101768.	10.2	61

#	Article	IF	CITATIONS
145	Morphology Evolution in Highâ€Performance Polymer Solar Cells Processed from Nonhalogenated Solvent. Advanced Science, 2015, 2, 1500095.	5.6	60
146	Energy‣evel Alignment at the Organic/Electrode Interface in Organic Optoelectronic Devices. Advanced Functional Materials, 2016, 26, 129-136.	7.8	60
147	Recent progress in thickâ€film organic photovoltaic devices: Materials, devices, and processing. SusMat, 2021, 1, 4-23.	7.8	59
148	Chain Length Dependence of the Photovoltaic Properties of Monodisperse Donor–Acceptor Oligomers as Model Compounds of Polydisperse Low Band Gap Polymers. Advanced Functional Materials, 2014, 24, 7538-7547.	7.8	58
149	Optimizing Microstructure Morphology and Reducing Electronic Losses in 1 cm ² Polymer Solar Cells to Achieve Efficiency over 15%. ACS Energy Letters, 2019, 4, 2466-2472.	8.8	58
150	Semitransparent Organic Solar Cells Enabled by a Sequentially Deposited Bilayer Structure. ACS Applied Materials & Interfaces, 2020, 12, 18473-18481.	4.0	58
151	Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells. Chemical Science, 2017, 8, 4587-4594.	3.7	57
152	Supramolecular Phosphorescent Polymer Iridium Complexes for High-Efficiency Organic Light-Emitting Diodes. Chemistry of Materials, 2013, 25, 1013-1019.	3.2	55
153	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. Journal of Materials Chemistry A, 2015, 3, 18483-18491.	5.2	55
154	Non-planar perylenediimide acceptors with different geometrical linker units for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 1713-1723.	5.2	54
155	High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy. ACS Applied Materials & Interfaces, 2019, 11, 14208-14214.	4.0	54
156	All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2- <i>c</i>][1,2,5]thiadiazole (fDTBT)-based polymer don Materials Chemistry A, 2021, 9, 8975-8983.	or. 5 øurnal	of54
157	Hydrophilic Conjugated Materials for Photocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2020, 15, 1780-1790.	1.7	53
158	Star-shaped electron acceptors containing a truxene core for non-fullerene solar cells. Organic Electronics, 2018, 52, 42-50.	1.4	52
159	Efficient and Air‣table Aqueousâ€Processed Organic Solar Cells and Transistors: Impact of Water Addition on Processability and Thinâ€Film Morphologies of Electroactive Materials. Advanced Energy Materials, 2018, 8, 1802674.	10.2	52
160	Fineâ€Tuning Batch Factors of Polymer Acceptors Enables a Binary Allâ€Polymer Solar Cell with High Efficiency of 16.11%. Advanced Energy Materials, 2022, 12, .	10.2	52
161	Achieving 16% Efficiency for Polythiophene Organic Solar Cells with a Cyanoâ€Substituted Polythiophene. Advanced Functional Materials, 2022, 32, .	7.8	51
162	Red-Emitting DPSB-Based Conjugated Polymer Nanoparticles with High Two-Photon Brightness for Cell Membrane Imaging. ACS Applied Materials & amp; Interfaces, 2015, 7, 6754-6763.	4.0	50

#	Article	IF	CITATIONS
163	Synergic Interface and Optical Engineering for Highâ€Performance Semitransparent Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1701121.	10.2	50
164	Layerâ€byâ€Layer Processed PM6:Y6â€Based Stable Ternary Polymer Solar Cells with Improved Efficiency over 18% by Incorporating an Asymmetric Thieno[3,2â€ <i>b</i>]indoleâ€Based Acceptor. Advanced Functional Materials, 2022, 32, .	7.8	50
165	Understanding of Imine Substitution in Wide-Bandgap Polymer Donor-Induced Efficiency Enhancement in All-Polymer Solar Cells. Chemistry of Materials, 2019, 31, 8533-8542.	3.2	49
166	Improving the efficiency and stability of non-fullerene polymer solar cells by using N2200 as the Additive. Nano Energy, 2019, 58, 724-731.	8.2	49
167	Polythiophene derivatives compatible with both fullerene and non-fullerene acceptors for polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 314-323.	2.7	48
168	3,4â€Dicyanothiophene—a Versatile Building Block for Efficient Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2020, 10, 1904247.	10.2	48
169	Molecular packing control enables excellent performance and mechanical property of blade-cast all-polymer solar cells. Nano Energy, 2019, 59, 277-284.	8.2	47
170	Electrical and spin switches in singleâ€molecule junctions. InformaÄnÃ-Materiály, 2020, 2, 92-112.	8.5	47
171	Evolution of the electronic structure in open-shell donor-acceptor organic semiconductors. Nature Communications, 2021, 12, 5889.	5.8	47
172	Self-Doped N-Type Water/Alcohol Soluble-Conjugated Polymers with Tailored Backbones and Polar Groups for Highly Efficient Polymer Solar Cells. Solar Rrl, 2017, 1, 1700055.	3.1	46
173	Metal-free hydrophilic D-A conjugated polyelectrolyte dots/g-C3N4 nanosheets heterojunction for efficient and irradiation-stable water-splitting photocatalysis. Applied Catalysis B: Environmental, 2020, 270, 118852.	10.8	46
174	Self-doped n-type small molecular electron transport materials for high-performance organic solar cells. Science China Chemistry, 2017, 60, 1136-1144.	4.2	45
175	Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process. ACS Applied Materials & Interfaces, 2017, 9, 29917-29923.	4.0	45
176	Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency. Nano Energy, 2018, 46, 428-435.	8.2	45
177	Suppressing the excessive aggregation of nonfullerene acceptor in bladeâ€coated active layer by using nâ€type polymer additive to achieve largeâ€area printed organic solar cells with efficiency over 15%. EcoMat, 2019, 1, e12006.	6.8	45
178	Visible-to-near-infrared organic photodiodes with performance comparable to commercial silicon-based detectors. Applied Physics Letters, 2020, 117, .	1.5	45
179	Stretchable transparent electrodes for conformable wearable organic photovoltaic devices. Npj Flexible Electronics, 2021, 5, .	5.1	45
180	Doping Compensation Enables Highâ€Detectivity Infrared Organic Photodiodes for Image Sensing. Advanced Materials, 2022, 34, e2201827.	11.1	45

#	Article	IF	CITATIONS
181	Low temperature processed high-performance thick film ternary polymer solar cell with enhanced stability. Nano Energy, 2018, 48, 53-62.	8.2	44
182	Highly Efficient Tandem Organic Solar Cell Enabled by Environmentally Friendly Solvent Processed Polymeric Interconnecting Layer. Advanced Energy Materials, 2018, 8, 1703180.	10.2	44
183	Fluorescent Supramolecular Polymers Based on Pillar[5]arene for OLED Device Fabrication. ACS Macro Letters, 2017, 6, 647-651.	2.3	43
184	Toward High Efficiency Polymer Solar Cells: Influence of Local Chemical Environment and Morphology. Advanced Energy Materials, 2017, 7, 1601081.	10.2	43
185	Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Science China Chemistry, 2018, 61, 427-436.	4.2	43
186	Achieving Ecoâ€Compatible Organic Solar Cells with Efficiency >16.5% Based on an Iridium Complexâ€Incorporated Polymer Donor. Solar Rrl, 2020, 4, 2000156.	3.1	43
187	The Renaissance of Oligothiopheneâ€Based Donor–Acceptor Polymers in Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	43
188	Aqueous-Soluble Naphthalene Diimide-Based Polymer Acceptors for Efficient and Air-Stable All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45038-45047.	4.0	42
189	High-Detectivity Non-Fullerene Organic Photodetectors Enabled by a Cross-Linkable Electron Blocking Layer. ACS Applied Materials & Interfaces, 2020, 12, 45092-45100.	4.0	42
190	Consecutive Charging of a Perylene Bisimide Dye by Multistep Lowâ€Energy Solarâ€Lightâ€Induced Electron Transfer Towards H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 10363-10367.	7.2	42
191	In-situ self-organized anode interlayer enables organic solar cells with simultaneously simplified processing and greatly improved efficiency to 17.8%. Nano Energy, 2022, 93, 106814.	8.2	42
192	High efficiency solution processed inverted white organic light emitting diodes with a cross-linkable amino-functionalized polyfluorene as a cathode interlayer. Journal of Materials Chemistry C, 2014, 2, 3270-3277.	2.7	41
193	Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss. Journal of Materials Chemistry C, 2018, 6, 4457-4463.	2.7	41
194	Amino-functionalised conjugated porous polymers for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 19087-19093.	5.2	41
195	A novel crosslinkable electron injection/transporting material for solution processed polymer light-emitting diodes. Science China Chemistry, 2011, 54, 1745-1749.	4.2	40
196	Electrostatically self-assembled chitosan derivatives working as efficient cathode interlayers for organic solar cells. Nano Energy, 2017, 34, 164-171.	8.2	40
197	A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss. Journal of Materials Chemistry A, 2018, 6, 18469-18478.	5.2	40
198	Impact of Donor–Acceptor Interaction and Solvent Additive on the Vertical Composition Distribution of Bulk Heterojunction Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45979-45990.	4.0	40

#	Article	IF	CITATIONS
199	Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36070-36081.	4.0	39
200	Conjugated Polymers Based on Difluorobenzoxadiazole toward Practical Application of Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1702033.	10.2	39
201	Layerâ€by‣ayer Assembly of Multilayer Thin Films for Organic Optoelectronic Devices. Small Methods, 2017, 1, 1700264.	4.6	39
202	Polymer Preâ€Aggregation Enables Optimal Morphology and High Performance in Allâ€Polymer Solar Cells. Solar Rrl, 2020, 4, 1900385.	3.1	39
203	High-detectivity inverted near-infrared polymer photodetectors using cross-linkable conjugated polyfluorene as an electron extraction layer. Journal of Materials Chemistry C, 2014, 2, 9592-9598.	2.7	38
204	Crossâ€Linkable and Dual Functional Hybrid Polymeric Electron Transporting Layer for Highâ€Performance Inverted Polymer Solar Cells. Advanced Materials, 2017, 29, 1701507.	11.1	38
205	Facile one-step fabrication of CdS _{0.12} Se _{0.88} quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 9866-9873.	5.2	38
206	Backbone Fluorination of Polythiophenes Improves Device Performance of Non-Fullerene Polymer Solar Cells. ACS Applied Energy Materials, 2019, 2, 7572-7583.	2.5	38
207	Biomass Nanomicelles Assist Conjugated Polymers/Pt Cocatalysts To Achieve High Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 4128-4135.	3.2	38
208	A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1500631.	10.2	37
209	Fluoro- and Amino-Functionalized Conjugated Polymers as Electron Transport Materials for Perovskite Solar Cells with Improved Efficiency and Stability. ACS Applied Materials & Interfaces, 2019, 11, 5289-5297.	4.0	37
210	Benzo[1,2â€b:4,5â€b′]difuran Based Polymer Donor for Highâ€Efficiency (>16%) and Stable Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	37
211	Improved Morphology and Efficiency of Polymer Solar Cells by Processing Donor–Acceptor Copolymer Additives. Advanced Functional Materials, 2016, 26, 6479-6488.	7.8	36
212	Constructing a new polymer acceptor enabled non-halogenated solvent-processed all-polymer solar cell with an efficiency of 13.8%. Chemical Communications, 2021, 57, 935-938.	2.2	36
213	High-detectivity organic photodetectors based on a thick-film photoactive layer using a conjugated polymer containing a naphtho[1,2- <i>c</i> :5,6- <i>c</i>]bis[1,2,5]thiadiazole unit. Journal of Materials Chemistry C, 2019, 7, 6070-6076.	2.7	35
214	Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive. Chinese Journal of Polymer Science (English Edition), 2020, 38, 323-331.	2.0	35
215	[1,2,5]Thiadiazolo[3,4-f]benzotriazole based narrow band gap conjugated polymers with photocurrent response up to 1.114/m. Organic Electronics, 2013, 14, 2459-2467.	1.4	34
216	Counterion-tunable n-type conjugated polyelectrolytes for the interface engineering of efficient polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 19447-19455.	5.2	34

#	Article	IF	CITATIONS
217	A Shockleyâ€Type Polymer: Fullerene Solar Cell. Advanced Energy Materials, 2018, 8, 1701450.	10.2	34
218	Reduced Energy Loss in Non-Fullerene Organic Solar Cells with Isomeric Donor Polymers Containing Thiazole π-Spacers. ACS Applied Materials & Interfaces, 2020, 12, 753-762.	4.0	34
219	Water–Alcohol-Soluble Hyperbranched Polyelectrolytes and Their Application in Polymer Solar Cells and Photocatalysis. ACS Applied Polymer Materials, 2020, 2, 12-18.	2.0	34
220	High-efficiency and solution processible multilayer white polymer light-emitting diodes using neutral conjugated surfactant as an electron injection layer. Applied Physics Letters, 2008, 92, 063303.	1.5	33
221	Two-dimensional like conjugated copolymers for high efficiency bulk-heterojunction solar cell application: Band gap and energy level engineering. Science China Chemistry, 2011, 54, 685-694.	4.2	33
222	Optimizing Lightâ€Harvesting Polymers via Side Chain Engineering. Advanced Functional Materials, 2015, 25, 6458-6469.	7.8	33
223	Dimesitylboryl-functionalized tetraphenylethene derivatives: efficient solid-state luminescent materials with enhanced electron-transporting ability for nondoped OLEDs. Journal of Materials Chemistry C, 2016, 4, 5241-5247.	2.7	33
224	Regioisomeric Non-Fullerene Acceptors Containing Fluorobenzo[<i>c</i>][1,2,5]thiadiazole Unit for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 37087-37093.	4.0	33
225	N-Type Self-Doped Water/Alcohol-Soluble Conjugated Polymers with Tailored Energy Levels for High-Performance Polymer Solar Cells. Macromolecules, 2018, 51, 2195-2202.	2.2	33
226	Highly smooth, stable and reflective Ag-paper electrode enabled by silver mirror reaction for organic optoelectronics. Chemical Engineering Journal, 2019, 370, 1048-1056.	6.6	33
227	Bithieno[3,4-c]pyrrole-4,6-dione-Mediated Crystallinity in Large-Bandgap Polymer Donors Directs Charge Transportation and Recombination in Efficient Nonfullerene Polymer Solar Cells. ACS Energy Letters, 2020, 5, 367-375.	8.8	33
228	The effect of end-capping groups in A-D-A type non-fullerene acceptors on device performance of organic solar cells. Science China Chemistry, 2017, 60, 1458-1467.	4.2	32
229	Toward High Efficiency Polymer Solar Cells: Rearranging the Backbone Units into a Readily Accessible Random Tetrapolymer. Advanced Energy Materials, 2018, 8, 1701668.	10.2	32
230	One-step synthesis of cyclic compounds towards easy room-temperature phosphorescence and deep blue thermally activated delayed fluorescence. Chemical Communications, 2018, 54, 7850-7853.	2.2	32
231	Substituent Regulation Improves Photocatalytic Hydrogen Evolution of Conjugated Polyelectrolytes. , 2019, 1, 620-627.		32
232	Lithium salt doped conjugated polymers as electron transporting materials for highly efficient blue polymer light-emitting diodes. Applied Physics Letters, 2008, 93, .	1.5	31
233	Novel perylene diimide based polymeric electron-acceptors containing ethynyl as the π-bridge for all-polymer solar cells. Organic Electronics, 2017, 45, 227-233.	1.4	31
234	Copper Thiocyanate as an Anode Interfacial Layer for Efficient Near-Infrared Organic Photodetector. ACS Applied Materials & amp; Interfaces, 2021, 13, 1027-1034.	4.0	31

#	Article	IF	CITATIONS
235	Conjugated Polymers Based on Thiazole Flanked Naphthalene Diimide for Unipolar n-Type Organic Field-Effect Transistors. Chemistry of Materials, 2018, 30, 8343-8351.	3.2	30
236	High-Performance Ternary Nonfullerene Polymer Solar Cells with Both Improved Photon Harvesting and Device Stability. ACS Applied Materials & Interfaces, 2018, 10, 25594-25603.	4.0	30
237	Organic diradicals enabled N-type self-doped conjugated polyelectrolyte with high transparency and enhanced conductivity. Giant, 2021, 6, 100053.	2.5	30
238	Improving photovoltaic parameters of all-polymer solar cells through integrating two polymeric donors. Science China Chemistry, 2021, 64, 2010-2016.	4.2	30
239	Synthesis of two-dimensional ï€-conjugated polymers pendent with benzothiadiazole and naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole moieties for polymer solar cells. Science China Chemistry, 2015, 58, 257-266.	4.2	29
240	Efficient All-Polymer Solar Cells Based on Conjugated Polymer Containing an Alkoxylated Imide-Functionalized Benzotriazole Unit. Macromolecules, 2017, 50, 8149-8157.	2.2	29
241	Non-fullerene polymer solar cells with V _{OC} > 1 V based on fluorinated quinoxaline unit conjugated polymers. Journal of Materials Chemistry C, 2017, 5, 8774-8781.	2.7	29
242	Overcoming incompatibility of donors and acceptors by constructing planar heterojunction organic solar cells. Nano Energy, 2021, 85, 105957.	8.2	29
243	An accurate, high-speed, portable bifunctional electrical detector for COVID-19. Science China Materials, 2021, 64, 739-747.	3.5	29
244	An alcohol soluble amino-functionalized organoplatinum(<scp>ii</scp>) complex as the cathode interlayer for highly efficient polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 4372-4379.	2.7	28
245	Novel donor–acceptor type conjugated polymers based on quinoxalino[6,5-f]quinoxaline for photovoltaic applications. Materials Chemistry Frontiers, 2017, 1, 499-506.	3.2	28
246	8.0% Efficient all-polymer solar cells based on novel starburst polymer acceptors. Science China Chemistry, 2018, 61, 576-583.	4.2	28
247	Ultrasensitive Solution-Processed Broadband PbSe Photodetectors through Photomultiplication Effect. ACS Applied Materials & amp; Interfaces, 2019, 11, 9205-9212.	4.0	28
248	Oxoammonium enabled secondary doping of hole transporting material PEDOT:PSS for high-performance organic solar cells. Science China Chemistry, 2020, 63, 802-809.	4.2	28
249	Ternary organic photodiodes with spectral response from 300 to 1200 nm for spectrometer application. Science China Materials, 2021, 64, 2430-2438.	3.5	28
250	Acenaphtho[1,2- b]quinoxaline diimides derivative as a potential small molecule non-fullerene acceptor for organic solar cells. Organic Electronics, 2016, 30, 176-181.	1.4	27
251	High-Performance Organic Field-Effect Transistors Fabricated Based on a Novel Ternary π-Conjugated Copolymer. ACS Applied Materials & Interfaces, 2017, 9, 7315-7321.	4.0	27
252	Chlorinated Fused Nonacyclic Non-Fullerene Acceptor Enables Efficient Large-Area Polymer Solar Cells with High Scalability. Chemistry of Materials, 2020, 32, 1022-1030.	3.2	27

#	Article	IF	CITATIONS
253	Recent advances of interface engineering for non-fullerene organic solar cells. Organic Electronics, 2021, 93, 106141.	1.4	27
254	Formation of Vitrified Solid Solution Enables Simultaneously Efficient and Stable Organic Solar Cells. ACS Energy Letters, 2021, 6, 3522-3529.	8.8	27
255	Design of All-Fused-Ring Nonfullerene Acceptor for Highly Sensitive Self-Powered Near-Infrared Organic Photodetectors. , 2022, 4, 882-890.		27
256	On the understanding of energetic disorder, charge recombination and voltage losses in all-polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 7855-7863.	2.7	26
257	Highâ€Performance Green Solvent Processed Ternary Blended Allâ€Polymer Solar Cells Enabled by Complementary Absorption and Improved Morphology. Solar Rrl, 2018, 2, 1800196.	3.1	26
258	An efficient binary cathode interlayer for large-bandgap non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 12426-12433.	5.2	26
259	Tetraphenylbenzosilole: An AIE Building Block for Deep-Blue Emitters with High Performance in Nondoped Spin-Coating OLEDs. Journal of Organic Chemistry, 2020, 85, 158-167.	1.7	26
260	Performance Study of Water/Alcohol Soluble Polymer Interface Materials in Polymer Optoelectronic Devices. Acta Chimica Sinica, 2012, 70, 2489.	0.5	26
261	Efficient ultraviolet-blue polymer light-emitting diodes based on a fluorene-based non-conjugated polymer. Applied Physics Letters, 2006, 89, 081104.	1.5	25
262	A Facile Synthesized Polymer Featuring Bâ€N Covalent Bond and Small Singletâ€Triplet Gap for Highâ€Performance Organic Solar Cells. Angewandte Chemie, 2021, 133, 8895-8899.	1.6	25
263	Noncovalent Interactions Induced by Fluorination of the Central Core Improve the Photovoltaic Performance of A-D-A′-D-A-Type Nonfused Ring Acceptors. ACS Applied Energy Materials, 2022, 5, 7710-7718.	2.5	25
264	Perovskite hybrid solar cells with a fullerene derivative electron extraction layer. Journal of Materials Chemistry C, 2017, 5, 4190-4197.	2.7	24
265	Finely Tuned Composition in Conjugated Polyelectrolytes for Interfacial Engineering of Efficient Polymer Solar Cells. Small Methods, 2018, 2, 1700407.	4.6	24
266	Nonhalogenatedâ€Solventâ€Processed Highâ€Performance Allâ€Polymer Solar Cell with Efficiency over 14%. Solar Rrl, 2021, 5, 2100076.	3.1	24
267	White light-emitting diodes based on an all-phosphorescent supramolecular polymer. Polymer Chemistry, 2015, 6, 6202-6207.	1.9	23
268	Dithienosilole-benzothiadiazole-based ternary copolymers with a D ₁ –A–D ₂ –A structure for polymer solar cells. Polymer Chemistry, 2015, 6, 4154-4161.	1.9	23
269	In-situ synthesis of metal nanoparticle-polymer composites and their application as efficient interfacial materials for both polymer and planar heterojunction perovskite solar cells. Organic Electronics, 2015, 27, 46-52.	1.4	23
270	One-step coating inverted polymer solar cells using a conjugated polymer as an electron extraction additive. Journal of Materials Chemistry A, 2015, 3, 20500-20507.	5.2	23

#	Article	IF	CITATIONS
271	The incorporation of thermionic emission and work function tuning layer into intermediate connecting layer for high performance tandem organic solar cells. Nano Energy, 2016, 21, 123-132.	8.2	23
272	Introducing cyclic alkyl chains into small-molecule acceptors for efficient polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 7046-7053.	2.7	23
273	Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss. Journal of Materials Chemistry A, 2021, 9, 13522-13530.	5.2	23
274	Fine Tuning Miscibility of Donor/Acceptor through Solid Additives Enables Allâ€Polymer Solar Cells with 15.6% Efficiency. Solar Rrl, 2021, 5, 2100549.	3.1	23
275	Effect of Monofluoro Substitution on the Optoelectronic Properties of Benzo[<i>c</i>][1,2,5]thiadiazole Based Organic Semiconductors. Macromolecules, 2016, 49, 5806-5816.	2.2	22
276	Improved Efficiency of Polymer Solar Cells by Modifying the Side Chain of Wide-Band Gap Conjugated Polymers Containing Pyrrolo[3,4- <i>f</i>]benzotriazole-5,7(6 <i>H</i>)-dione Moiety. ACS Applied Materials & Interfaces, 2018, 10, 22495-22503.	4.0	22
277	A Rational Design and Synthesis of Cross-Conjugated Small Molecule Acceptors Approaching High-Performance Fullerene-Free Polymer Solar Cells. Chemistry of Materials, 2018, 30, 4331-4342.	3.2	22
278	Efficient Organic Ternary Solar Cells Employing Narrow Band Gap Diketopyrrolopyrrole Polymers and Nonfullerene Acceptors. Chemistry of Materials, 2020, 32, 7309-7317.	3.2	22
279	Synchronously regulating the alkyl side-chain and regioisomer of polymerized small molecule acceptor enabling highly efficient all-polymer solar cells processed with non-halogenated solvent. Chemical Engineering Journal, 2022, 433, 133575.	6.6	22
280	Bandgap engineering of indenofluoreneâ€based conjugated copolymers with pendant donorâ€Ï€â€acceptor chromophores for photovoltaic applications. Journal of Polymer Science Part A, 2011, 49, 4406-4415.	2.5	21
281	Asymmetric Alkyl Sideâ€Chain Engineering of Naphthalene Diimideâ€Based nâ€Type Polymers for Efficient Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700765.	2.0	21
282	Benzoselenadiazole-based donor-acceptor small molecule: Synthesis, aggregation-induced emission and electroluminescence. Dyes and Pigments, 2018, 149, 399-406.	2.0	21
283	Efficient organic-inorganic hybrid cathode interfacial layer enabled by polymeric dopant and its application in large-area polymer solar cells. Science China Chemistry, 2019, 62, 67-73.	4.2	21
284	Heptacyclic S,N-Heteroacene-Based Near-Infrared Nonfullerene Acceptor Enables High-Performance Organic Solar Cells with Small Highest Occupied Molecular Orbital Offsets. ACS Applied Materials & Interfaces, 2020, 12, 51776-51784.	4.0	21
285	In Situ Structure Characterization in Slotâ€Đieâ€Printed Allâ€Polymer Solar Cells with Efficiency Over 9%. Solar Rrl, 2019, 3, 1900032.	3.1	20
286	Impact of Bimolecular Recombination on the Fill Factor of Fullerene and Nonfullerene-Based Solar Cells: A Comparative Study of Charge Generation and Extraction. Journal of Physical Chemistry C, 2019, 123, 6823-6830.	1.5	20
287	Aromatic inorganic acid radical. Science China Chemistry, 2019, 62, 1656-1665.	4.2	20
288	Toward Efficient Tandem Organic Solar Cells: From Materials to Device Engineering. ACS Applied Materials & Amp; Interfaces, 2020, 12, 39937-39947.	4.0	20

#	Article	IF	CITATIONS
289	Novel cyclometalated platinum (II) complex containing carrier-transporting groups: Synthesis, luminescence and application in single dopant white PLEDs. Dyes and Pigments, 2013, 96, 732-737.	2.0	19
290	Red emitting conjugated polymer based nanophotosensitizers for selectively targeted two-photon excitation imaging guided photodynamic therapy. Nanoscale, 2019, 11, 185-192.	2.8	19
291	One‣tep Blade oated Highly Efficient Nonfullerene Organic Solar Cells with a Selfâ€Assembled Interfacial Layer Enabled by Solvent Vapor Annealing. Solar Rrl, 2019, 3, 1900179.	3.1	19
292	Adjusting Aggregation Modes and Photophysical and Photovoltaic Properties of Diketopyrrolopyrroleâ€Based Small Molecules by Introducing Bâ†N Bonds. Chemistry - A European Journal, 2019, 25, 564-572.	1.7	19
293	Synergistic Effects of Polymer Donor Backbone Fluorination and Nitrogenation Translate into Efficient Non-Fullerene Bulk-Heterojunction Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 9545-9554.	4.0	19
294	Ternary All-Polymer Solar Cells With 8.5% Power Conversion Efficiency and Excellent Thermal Stability. Frontiers in Chemistry, 2020, 8, 302.	1.8	19
295	Morphology evolution with polymer chain propagation and its impacts on device performance and stability of non-fullerene solar cells. Journal of Materials Chemistry A, 2021, 9, 556-565.	5.2	19
296	Porphyrin-Based Conjugated Polyelectrolytes for Efficient Photocatalytic Hydrogen Evolution. Macromolecules, 2021, 54, 4902-4909.	2.2	19
297	Low-bandgap conjugated polymers based on benzodipyrrolidone with reliable unipolar electron mobility exceeding 1 cm2 Vâ"1 sâ"1. Science China Chemistry, 2021, 64, 1219-1227.	4.2	19
298	Effects of Oxygen Position in the Alkoxy Substituents on the Photovoltaic Performance of A-DA′D-A Type Pentacyclic Small Molecule Acceptors. ACS Energy Letters, 2022, 7, 2373-2381.	8.8	19
299	Spontaneous Interfacial Dipole Orientation Effect of Acetic Acid Solubilized PFN. ACS Applied Materials & amp; Interfaces, 2018, 10, 10270-10279.	4.0	18
300	Cross-conjugated n-type polymer acceptors for efficient all-polymer solar cells. Chemical Communications, 2018, 54, 2204-2207.	2.2	18
301	Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 1939-1947.	4.0	18
302	Recent Progress in Allâ€Polymer Solar Cells Based on Wideâ€Bandgap pâ€Type Polymers. Chemistry - an Asian Journal, 2019, 14, 3109-3118.	1.7	18
303	Superior layer-by-layer deposition realizing P–i–N all-polymer solar cells with efficiency over 16% and fill factor over 77%. Journal of Materials Chemistry A, 2022, 10, 10880-10891.	5.2	18
304	Nonâ€Fused Polymerized Small Molecular Acceptors for Efficient Allâ€Polymer Solar Cells. Solar Rrl, 2022, 6, .	3.1	18
305	Tandem organic solar cells with 18.67% efficiency <i>via</i> careful subcell design and selection. Journal of Materials Chemistry A, 2022, 10, 11238-11245.	5.2	18
306	An electron acceptor featuring a B–N covalent bond and small singlet–triplet gap for organic solar cells. Chemical Communications, 2022, 58, 8686-8689.	2.2	18

#	Article	IF	CITATIONS
307	Synthesis of regioregular π-conjugated polymers consisting of a lactam moiety via direct heteroarylation polymerization. Chemical Communications, 2017, 53, 1997-2000.	2.2	17
308	Microwave-assisted one-pot three-component polymerization of alkynes, aldehydes and amines toward amino-functionalized optoelectronic polymers. Chinese Journal of Polymer Science (English Edition), 2017, 35, 269-281.	2.0	17
309	High-Performance All-Polymer Solar Cells and Photodetectors Enabled by a High-Mobility n-Type Polymer and Optimized Bulk-Heterojunction Morphology. Chemistry of Materials, 2021, 33, 3746-3756.	3.2	17
310	Anionic triphenylamine―and fluoreneâ€based conjugated polyelectrolyte as a holeâ€transporting material for polymer lightâ€emitting diodes. Polymer International, 2009, 58, 373-379.	1.6	16
311	The influence of amino group on PCDTBT-based and P3HT-based polymer solar cells: Hole trapping processes. Applied Physics Letters, 2015, 106, .	1.5	16
312	Non-conjugated water/alcohol soluble polymers with different oxidation states of sulfide as cathode interlayers for high-performance polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 4288-4295.	2.7	16
313	Phosphonium conjugated polyelectrolytes as interface materials for efficient polymer solar cells. Organic Electronics, 2018, 57, 151-157.	1.4	16
314	Electron Acceptors With a Truxene Core and Perylene Diimide Branches for Organic Solar Cells: The Effect of Ring-Fusion. Frontiers in Chemistry, 2018, 6, 328.	1.8	16
315	High-performance inverted polymer solar cells without an electron extraction layer <i>via</i> a one-step coating of cathode buffer and active layer. Journal of Materials Chemistry A, 2019, 7, 1429-1434.	5.2	16
316	The regioisomeric bromination effects of fused-ring electron acceptors: modulation of the optoelectronic property and miscibility endowing the polymer solar cells with 15% efficiency. Journal of Materials Chemistry A, 2020, 8, 25101-25108.	5.2	16
317	Manipulating Film Morphology of Allâ€Polymer Solar Cells by Incorporating Polymer Compatibilizer. Solar Rrl, 2020, 4, 2000148.	3.1	16
318	Decoupling Complex Multiâ€Lengthâ€Scale Morphology in Nonâ€Fullerene Photovoltaics with Nitrogen Kâ€Edge Resonant Soft Xâ€ray Scattering. Advanced Materials, 2022, 34, e2107316.	11.1	16
319	Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites. Journal of Polymer Engineering, 2018, 38, 137-146.	0.6	15
320	Overcoming the morphological and efficiency limit in all-polymer solar cells by designing conjugated random copolymers containing a naphtho[1,2- <i>c</i> 5,6- <i>c</i> ′]bis([1,2,5]thiadiazole)] moiety. Journal of Materials Chemistry A, 2018, 6, 23295-23300.	5.2	15
321	Star-like n-type conjugated polymers based on naphthalenediimide for all-polymer solar cells. Dyes and Pigments, 2018, 159, 85-91.	2.0	15
322	A Wideâ€Bandgap Conjugated Polymer Based on Quinoxalino[6,5â€ <i>f</i>]quinoxaline for Fullerene Nonâ€Fullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2019, 40, e1900120.	and 2.0	15
323	Growth of Multinary Copper-Based Sulfide Shells on CuInSe ₂ Nanocrystals for Significant Improvement of Their Near-Infrared Emission. Chemistry of Materials, 2020, 32, 7842-7849.	3.2	15
324	A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-b:4,5-b′]dithiophene Core for Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2021, 39, 35-42.	2.0	15

#	Article	IF	CITATIONS
325	Non-fullerene electron acceptors with benzotrithiophene with π-extension terminal groups for the development of high-efficiency organic solar cells. Journal of Materials Chemistry C, 2021, 9, 13896-13903.	2.7	15
326	Dodecacyclicâ€Fused Electron Acceptors with Multiple Electronâ€Deficient Units for Efficient Organic Solar Cells. ChemSusChem, 2021, 14, 3544-3552.	3.6	15
327	N-alkyl chain modification in dithienobenzotriazole unit enabled efficient polymer donor for high-performance non-fullerene solar cells. Journal of Energy Chemistry, 2022, 66, 382-389.	7.1	15
328	Highâ€Efficiency P3HTâ€Based Allâ€Polymer Solar Cells with a Thermodynamically Miscible Polymer Acceptor. Solar Rrl, 2022, 6, .	3.1	15
329	Novel yellow phosphorescent iridium complexes with dibenzothiophene-S,S-dioxide-based cyclometalated ligand for white polymer light-emitting diodes. Dyes and Pigments, 2018, 159, 637-645.	2.0	14
330	Design and synthesis of an amino-functionalized non-fullerene acceptor as a cathode interfacial layer for polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 5273-5279.	2.7	14
331	Novel iridium complexes as yellow phosphorescent emitters for single-layer yellow and white polymer light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 6626-6633.	2.7	13
332	Effects of pyridyl group orientations on the optoelectronic properties of regio-isomeric diketopyrrolopyrrole based π-conjugated polymers. Journal of Materials Chemistry C, 2016, 4, 2470-2479.	2.7	13
333	Photoconductive Cathode Interlayer for Enhanced Electron Injection in Inverted Polymer Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 11377-11381.	4.0	13
334	Consecutive Charging of a Perylene Bisimide Dye by Multistep Lowâ€Energy Solarâ€Lightâ€Induced Electron Transfer Towards H ₂ Evolution. Angewandte Chemie, 2020, 132, 10449-10453.	1.6	13
335	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie, 2021, 133, 10225-10234.	1.6	13
336	Naphthalene Diimide-Based Polymers Consisting of Amino Alkyl Side Groups:Three-Component One-Pot Polymerization and Their Application in Polymer Solar Cells. Acta Chimica Sinica, 2017, 75, 808.	0.5	13
337	Manipulating Grain Boundary Defects in Ï€â€Conjugated Covalent Organic Frameworks Enabling Intrinsic Radical Generation for Photothermal Conversion. Solar Rrl, 2021, 5, 2100762.	3.1	13
338	Novel cross-linked films from epoxy-functionalized conjugated polymer and amine based small molecule for the interface engineering of high-efficiency inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 22-29.	3.0	12
339	Improved performance of non-fullerene polymer solar cells using wide-bandgap random terpolymers. Organic Electronics, 2018, 57, 317-322.	1.4	12
340	Optimization of processing solvent and film morphology to achieve efficient non-fullerene polymer solar cells processed in air. Journal of Materials Chemistry C, 2020, 8, 270-275.	2.7	12
341	Aldol Condensationâ€Polymerized <i>n</i> â€Đoped Conjugated Polyelectrolytes for Highâ€Performance Nonfullerene Polymer Solar Cells. Solar Rrl, 2021, 5, .	3.1	12
342	A pyridinium-pended conjugated polyelectrolyte for efficient photocatalytic hydrogen evolution and organic solar cells. Polymer Chemistry, 2021, 12, 1498-1506.	1.9	12

#	Article	IF	CITATIONS
343	Synthesis and Photovoltaic Performance of Water/Alcohol Soluble Small Phorphyrin Derivatives for Polymer Solar Cells. Acta Chimica Sinica, 2015, 73, 1153.	0.5	12
344	Design, synthesis and photovoltaic properties of a series of new acceptor-pended conjugated polymers. Science China Chemistry, 2016, 59, 1583-1592.	4.2	11
345	Highly efficient, green-solvent processable, and stable non-fullerene polymer solar cells enabled by a random polymer donor. Organic Electronics, 2020, 85, 105874.	1.4	11
346	Side-chain engineering on conjugated porous polymer photocatalyst with adenine groups enables high-performance hydrogen evolution from water. Polymer, 2022, 240, 124509.	1.8	11
347	Targeted Adjusting Molecular Arrangement in Organic Solar Cells via a Universal Solid Additive. Advanced Functional Materials, 2022, 32, .	7.8	11
348	Synthesis of mediumâ€bandgap Ï€â€Conjugated polymers based on isomers of 5â€Alkylphenanthridinâ€6(5H)â€ and 6â€Alkoxylphenanthridine. Journal of Polymer Science Part A, 2016, 54, 2119-2127.	one 2.5	10
349	High open-circuit voltage organic solar cells enabled by a difluorobenzoxadiazole-based conjugated polymer donor. Science China Chemistry, 2019, 62, 829-836.	4.2	10
350	Shorter alkyl chain in thieno[3,4-c]pyrrole-4,6-dione (TPD)-based large bandgap polymer donors – Yield efficient non-fullerene polymer solar cells. Journal of Energy Chemistry, 2021, 53, 69-76.	7.1	10
351	Sequentially Deposited Active Layer with Bulk-Heterojunction-like Morphology for Efficient Conventional and Inverted All-Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, 13307-13315.	2.5	10
352	Alkali metal salts doped pluronic block polymers as electron injection/transport layers for high performance polymer light-emitting diodes. Science China Chemistry, 2012, 55, 766-771.	4.2	9
353	Sky-blue phosphorescent organic light-emitting diodes with dibenzo-24-crown-8 substituted iridium(III) complexes as the dopants. Dyes and Pigments, 2017, 138, 77-82.	2.0	9
354	Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2019, 37, 18-27.	2.0	9
355	Tailoring the side chain of imide-functional benzotriazole based polymers to achieve internal quantum efficiency approaching 100%. Journal of Materials Chemistry A, 2020, 8, 23519-23525.	5.2	9
356	Induced crystallization of sol–gel-derived zinc oxide for efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 9616-9623.	5.2	9
357	Polymer Solar Cells: Crosslinkable Aminoâ€Functionalized Conjugated Polymer as Cathode Interlayer for Efficient Inverted Polymer Solar Cells (Adv. Energy Mater. 11/2016). Advanced Energy Materials, 2016, 6, .	10.2	8
358	Solar Cells: Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells (Adv. Energy Mater. 5/2016). Advanced Energy Materials, 2016, 6, .	10.2	8
359	Enhanced performance of field-effect transistors based on C60 single crystals with conjugated polyelectrolyte. Science China Chemistry, 2017, 60, 490-496.	4.2	8
360	nâ€Type Conjugated Polymer Based on Dicyanodistyrylbenzene and Naphthalene Diimide Units for Allâ€Polymer Solar Cells . Chinese Journal of Chemistry, 2018, 36, 406-410.	2.6	8

#	Article	IF	CITATIONS
361	Naphthalenediimide-based n-type polymer acceptors with pendant twisted perylenediimide units for all-polymer solar cells. Polymer, 2018, 158, 183-189.	1.8	8
362	Non-fullerene acceptors end-capped with an extended conjugation group for efficient polymer solar cells. Organic Electronics, 2018, 59, 366-373.	1.4	8
363	Cyanovinylene-based copolymers synthesized by tin-free Knoevenagel polycondensation for high efficiency polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 8020-8027.	2.7	8
364	Improved efficiency in fullerene and non-fullerene polymer solar cells having an interdigitated interface with the electron transport layer. Materials Chemistry Frontiers, 2018, 2, 1859-1865.	3.2	8
365	Fused nonacyclic electron acceptors with additional alkyl side chains for efficient polymer solar cells. Organic Electronics, 2019, 68, 151-158.	1.4	8
366	Three-dimensional organic cage with narrowband delayed fluorescence. Science China Chemistry, 2020, 63, 897-903.	4.2	8
367	Truxene-based covalent organic polyhedrons constructed through alkyne metathesis. Organic Chemistry Frontiers, 2021, 8, 4723-4729.	2.3	8
368	Nâ€Type Quinoidal Polymers Based on Dipyrrolopyrazinedione for Application in Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2021, 27, 13527-13533.	1.7	8
369	Morphology evolution <i>via</i> solvent optimization enables all-polymer solar cells with improved efficiency and reduced voltage loss. Journal of Materials Chemistry C, 2022, 10, 6710-6716.	2.7	8
370	An Open ircuit Voltage and Power Conversion Efficiency Study of Fullerene Ternary Organic Solar Cells Based on Oligomer/Oligomer and Oligomer/Polymer. Macromolecular Rapid Communications, 2017, 38, 1700090.	2.0	7
371	Energy level modulation of donor–acceptor alternating random conjugated copolymers for achieving high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 15335-15343.	2.7	7
372	Direct arylation polycondensed conjugated polyelectrolytes as universal electron transport layers for highly efficient polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 15158-15167.	2.7	7
373	Triphenylamine and Fluorene Based Cationic Conjugated Polyelectrolytes: Synthesis and Characterization. Macromolecular Chemistry and Physics, 2009, 210, 150-160.	1.1	6
374	Dithienobenzothiadiazole-Bridged Nonfullerene Electron Acceptors for Efficient Organic Solar Cells. ACS Applied Polymer Materials, 2023, 5, 2298-2306.	2.0	6
375	Rationally regulating the terminal unit and copolymerization spacer of polymerized small-molecule acceptors for all-polymer solar cells with high open-circuit voltage over 1.10 V. Journal of Materials Chemistry A, 0, , .	5.2	6
376	Efficient Nonâ€Fullerene Organic Solar Cells Based on a Wideâ€Bandgap Polymer Donor Containing an Alkylthiophenylâ€&ubstituted Benzodithiophene Moiety. ChemPhysChem, 2019, 20, 2668-2673.	1.0	5
377	Efficient tandem polymer light-emitting diodes with PTPA-P/ZnO as the charge generation layer. Journal of Materials Chemistry C, 2019, 7, 8003-8010.	2.7	5
378	Photoelectrochemical Performance Enhancement of ZnSe Nanorods versus Dots: Combined Experimental and Computational Insights. Journal of Physical Chemistry Letters, 2020, 11, 10414-10420.	2.1	5

#	Article	IF	CITATIONS
379	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie, 2020, 132, 20565-20569.	1.6	5
380	Influence of the –CN substitution position on the performance of dicyanodistyrylbenzene-based polymer solar cells. Polymer Chemistry, 2020, 11, 1653-1662.	1.9	5
381	Dual–Functionalâ€Polymer Dopant–Passivant Boosted Electron Transport Layer for Highâ€Performance Inverted Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100236.	3.1	5
382	Synthesis of medium bandgap copolymers based on benzotriazole for non-fullerene organic solar cells. Polymer, 2019, 179, 121580.	1.8	4
383	A pseudo-metal-free strategy for constructing high performance photoelectrodes. Journal of Materials Chemistry A, 2020, 8, 12767-12773.	5.2	4
384	Cu(<scp>ii</scp>)-Porphyrin based near-infrared molecules: synthesis, characterization and photovoltaic application. New Journal of Chemistry, 2021, 45, 1601-1608.	1.4	4
385	Optimized active layer morphology via side-chain atomic substituents to achieve efficient and stable all-polymer solar cells. Journal of Materials Chemistry C, 2021, 9, 9515-9523.	2.7	4
386	Synthesis, optical and electroluminescent properties of novel polyfluorene/carbazole-based conjugated polyelectrolytes and their precursors. Frontiers of Optoelectronics in China, 2008, 1, 299-304.	0.2	3
387	Diethynylbenzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiopheneâ€based small molecule and crossâ€conjugated copolymers for organic solar cells. Journal of Polymer Science Part A, 2017, 55, 660-671.	2.5	3
388	Molecular design towards two-dimensional electron acceptors for efficient non-fullerene solar cells. Journal of Energy Chemistry, 2020, 51, 190-198.	7.1	3
389	Evidence That Sharp Interfaces Suppress Recombination in Thick Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 56394-56403.	4.0	3
390	Donor–Acceptor Copolymers with Rationally Regulated Side Chain Orientation for Polymer Solar Cells Processed by Non-Halogenated Solvent. Organic Materials, 2022, 4, 18-27.	1.0	3
391	High-performance non-fullerene polymer solar cells based on naphthobistriazole wide bandgap donor copolymers. Journal of Materials Chemistry C, 2019, 7, 4709-4715.	2.7	2
392	Direct arylation polycondensation towards water/alcohol-soluble conjugated polymers as the electron transporting layers for organic solar cells. Chemical Communications, 2021, 57, 5798-5801.	2.2	2
393	Truxene Functionalized Star-Shaped Non-fullerene Acceptor With Selenium-Annulated Perylene Diimides for Efficient Organic Solar Cells. Frontiers in Chemistry, 2021, 9, 681994.	1.8	2
394	Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 0, , 1.	2.0	2
395	Conjugated Polymers: Conjugated Polymer Nanoparticles with Ag+ -Sensitive Fluorescence Emission: A New Insight into the Cooperative Recognition Mechanism (Part. Part. Syst. Charact. 11/2013). Particle and Particle Systems Characterization, 2013, 30, 914-914.	1.2	0
396	Electrospun Donor/Acceptor Nanofibers for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 1535.	1.9	0