Peter Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2234251/publications.pdf

Version: 2024-02-01

248 papers 10,865 citations

28242 55 h-index 94 g-index

263 all docs

 $\begin{array}{c} 263 \\ \text{docs citations} \end{array}$

263 times ranked 7497 citing authors

#	Article	IF	CITATIONS
1	An integrative <scp>multiscale</scp> view of early cardiac looping. WIREs Mechanisms of Disease, 2022, 14, e1535.	1.5	1
2	Computational Modelling of Glucose Uptake in the Enterocyte. Physiome, 2022, , .	0.3	O
3	Computational Modelling of Glucose Uptake in the Enterocyte. Physiome, 2022, , .	0.3	O
4	Computational Modelling of Glucose Uptake in the Enterocyte. Physiome, 2022, , .	0.3	O
5	Edmund John Crampin 1973–2021. Bulletin of Mathematical Biology, 2022, 84, 35.	0.9	2
6	Simplifying the Process of Going From Cells to Tissues Using Statistical Mechanics. Frontiers in Physiology, 2022, 13, 837027.	1.3	1
7	Topographical Mapping of Catecholaminergic Axon Distribution and Morphology in the Flatâ€Mounts of the Mouse Heart. FASEB Journal, 2022, 36, .	0.2	O
8	Topographical Organization and Morphology of Calcitonin Geneâ€Related Peptide (CGRP) Axons in the Flatâ€Mounts of Whole Mouse Stomach. FASEB Journal, 2022, 36, .	0.2	O
9	The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology?. Annual Review of Biomedical Data Science, 2022, 5, 341-366.	2.8	4
10	Physiome Repository. , 2022, , 2804-2806.		0
11	FieldML., 2022,, 1401-1404.		O
12	Our natural "makeup―reveals more than it hides: Modeling the skin and its microbiome. WIREs Mechanisms of Disease, 2021, 13, e1497.	1.5	3
13	The SPARC DRC: Building a Resource for the Autonomic Nervous System Community. Frontiers in Physiology, 2021, 12, 693735.	1.3	31
14	3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. IScience, 2021, 24, 102795.	1.9	6
15	Theory and Implementation of Coupled Port-Hamiltonian Continuum and Lumped Parameter Models. Journal of Elasticity, 2021, 145, 339-382.	0.9	7
16	Computational Modelling of Glucose Uptake by SGLT1 and Apical GLUT2 in the Enterocyte. Frontiers in Physiology, 2021, 12, 699152.	1.3	5
17	Modeling the hepatic arterial flow in living liver donor after left hepatectomy and postoperative boundary condition exploration. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3268.	1.0	7
18	Population based approaches to computational musculoskeletal modelling. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1165-1168.	1.4	6

#	Article	IF	CITATIONS
19	Maternal Smoking Induced Cardiovascular Risks in Fetuses: How Can in silico Models Help?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 97.	2.0	2
20	How to link genomics to physiology through epigenomics. Epigenomics, 2020, 12, 285-287.	1.0	17
21	An in silico pipeline for subject-specific hemodynamics analysis in liver surgery planning. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 138-142.	0.9	2
22	An <i>in silico</i> rat liver atlas. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 597-600.	0.9	3
23	Computational simulations for the hepatic arterial buffer response after liver graft transplantation from an adult to a child. Medical Engineering and Physics, 2020, 75, 49-52.	0.8	8
24	An Anatomical Heart Model with Applications to Myocardial Activation and Ventricular Mechanics., 2020,, 3-26.		32
25	Comfort Simulator: A Software Tool to Model Thermoregulation and Perception of Comfort. Journal of Open Research Software, 2020, 8, 16.	2.7	2
26	A Modeling Framework for Computational Physiology. , 2020, , 1-12.		0
27	The Boron & De Weer Model of Intracellular pH Regulation. Physiome, 2020, , .	0.3	0
28	Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations. Physiome, 2020, , .	0.3	0
29	Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations. Physiome, 2020, , .	0.3	0
30	The Boron & De Weer Model of Intracellular pH Regulation. Physiome, 2020, , .	0.3	0
31	Mathematical Modeling of Epithelial Ion Transport. Physiology in Health and Disease, 2020, , 115-133.	0.2	0
32	Modeling Framework for Computational Physiology. , 2020, , 1691-1702.		2
33	Computational Modelling of Glucose Uptake in the Enterocyte. Physiome, 2020, , .	0.3	0
34	Anatomically based simulation of hepatic perfusion in the human liver. International Journal for Numerical Methods in Biomedical Engineering, 2019, 35, e3229.	1.0	16
35	Model annotation and discovery with the Physiome Model Repository. BMC Bioinformatics, 2019, 20, 457.	1.2	26
36	Bimodal behavior in fabric drying kinetics: An interpretation of modes. Textile Reseach Journal, 2019, 89, 5076-5084.	1.1	0

#	Article	IF	CITATIONS
37	Computational Modeling of Glucose Uptake in the Enterocyte. Frontiers in Physiology, 2019, 10, 380.	1.3	7
38	A Tribute to Ewald Weibel. Physiology, 2019, 34, 164-166.	1.6	1
39	Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research. Journal of Biomechanical Engineering, 2018, 140, .	0.6	16
40	Meeting the multiscale challenge: representing physiology processes over ApiNATOMY circuits using bond graphs. Interface Focus, 2018, 8, 20170026.	1. 5	19
41	Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations. Frontiers in Physiology, 2018, 9, 148.	1.3	32
42	Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. BioMedical Engineering OnLine, 2018, 17, 24.	1.3	143
43	Musculoskeletal Modelling and the Physiome Project. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2018, , 123-174.	0.3	10
44	Title is missing!., 2018,,.		0
45	A Modeling Framework for Computational Physiology. , 2018, , 1-12.		0
46	Investigating Hypotheses through Discovery of Relevant Models of Epithelial Transport. FASEB Journal, 2018, 32, 620.1.	0.2	0
47	Modelling Cardiac Tissue Growth and Remodelling. Journal of Elasticity, 2017, 129, 283-305.	0.9	19
48	Modelling Respiration Induced Torso Deformation Using a Mesh Fitting Algorithm. Lecture Notes in Computer Science, 2017, , 625-634.	1.0	0
49	The virtual esophagus: investigating esophageal functions <i>in silico</i> . Annals of the New York Academy of Sciences, 2016, 1380, 19-26.	1.8	5
50	The Human Physiome: a necessary key for the creative destruction of medicine. Interface Focus, 2016, 6, 20160003.	1.5	8
51	The Virtual Physiological Human: The Physiome Project Aims to Develop Reproducible, Multiscale Models for Clinical Practice. IEEE Pulse, 2016, 7, 36-42.	0.1	33
52	Roadmap for cardiovascular circulation model. Journal of Physiology, 2016, 594, 6909-6928.	1.3	33
53	The Virtual Physiological Human: Ten Years After. Annual Review of Biomedical Engineering, 2016, 18, 103-123.	5.7	73
54	Modular modelling with Physiome standards. Journal of Physiology, 2016, 594, 6817-6831.	1.3	15

#	Article	ΙF	Citations
55	The Cardiac Physiome Project. Journal of Physiology, 2016, 594, 6815-6816.	1.3	10
56	Virtual liver models in pre-surgical planning, intra-surgical navigation and prognosis analysis. Drug Discovery Today: Disease Models, 2016, 22, 51-56.	1.2	1
57	Requirements for the formal representation of pathophysiology mechanisms by clinicians. Interface Focus, 2016, 6, 20150099.	1.5	4
58	A physiome interoperability roadmap for personalized drug development. Interface Focus, 2016, 6, 20150094.	1.5	8
59	The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable. Interface Focus, 2016, 6, 20150103.	1.5	30
60	Relationship Between Structure and Mechanics for Membranous Tissues., 2016,, 135-173.		2
61	Mathematical Modeling of Epithelial Ion Transport. , 2016, , 265-278.		1
62	Post-mortem prediction of primal and selected retail cut weights of New Zealand lamb from carcass and animal characteristics. Meat Science, 2016, 112, 39-45.	2.7	12
63	The CellML 1.1 Specification. Journal of Integrative Bioinformatics, 2015, 12, 4-85.	1.0	17
64	The CellML Metadata Framework 2.0 Specification. Journal of Integrative Bioinformatics, 2015, 12, 86-103.	1.0	11
65	Using CellML with OpenCMISS to Simulate Multi-Scale Physiology. Frontiers in Bioengineering and Biotechnology, 2015, 2, 79.	2.0	19
66	What next? The future of New Zealand's research system. Journal of the Royal Society of New Zealand, 2015, 45, 132-133.	1.0	0
67	On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 477-484.	0.9	6
68	Big Data, Big Knowledge: Big Data for Personalized Healthcare. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1209-1215.	3.9	244
69	The Open Physiology workflow: modeling processes over physiology circuitboards of interoperable tissue units. Frontiers in Physiology, 2015, 6, 24.	1.3	9
70	OpenCOR: a modular and interoperable approach to computational biology. Frontiers in Physiology, 2015, 6, 26.	1.3	82
71	ICMA: an integrated cardiac modeling and analysis platform. Bioinformatics, 2015, 31, 1331-1333.	1.8	2
72	A framework for generating anatomically detailed subject-specific human facial models for biomechanical simulations. Visual Computer, 2015, 31, 527-539.	2.5	10

#	Article	IF	Citations
73	AneuSearch: a software prototype for intracranial aneurysm searching and clinical decision support. International Journal of Computer Assisted Radiology and Surgery, 2014, 9, 997-1004.	1.7	1
74	Emulating facial biomechanics using multivariate partial least squares surrogate models. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 1103-1120.	1.0	14
75	Biophysical constraints on the evolution of tissue structure and function. Journal of Physiology, 2014, 592, 2389-2401.	1.3	13
76	Physiome Repository., 2014,, 1-2.		0
77	Epithelial cell modeling: standardsâ€based simulation experiments (1180.4). FASEB Journal, 2014, 28, 1180.4.	0.2	0
78	FieldML, a proposed open standard for the Physiome project for mathematical model representation. Medical and Biological Engineering and Computing, 2013, 51, 1191-1207.	1.6	29
79	The influence of loading conditions on equine hoof capsule deflections and stored energy assessed by finite element analysis. Biosystems Engineering, 2013, 115, 283-290.	1.9	6
80	A vision and strategy for the virtual physiological human: 2012 update. Interface Focus, 2013, 3, 20130004.	1.5	74
81	Integrative approaches to computational biomedicine. Interface Focus, 2013, 3, 20130003.	1.5	10
82	Functional tissue units and their primary tissue motifs in multi-scale physiology. Journal of Biomedical Semantics, 2013, 4, 22.	0.9	30
83	Hemodynamic Analysis for Transjugular Intrahepatic Portosystemic Shunt (TIPS) in the Liver Based on a CT-Image. IEEE Transactions on Medical Imaging, 2013, 32, 92-98.	5.4	23
84	Numerical Simulation of Blood Flow in an Anatomically-Accurate Cerebral Venous Tree. IEEE Transactions on Medical Imaging, 2013, 32, 85-91.	5.4	19
85	Bridging the genotype–phenotype gap: what does it take?. Journal of Physiology, 2013, 591, 2055-2066.	1.3	62
86	Modelling facial expressions: A framework for simulating nonlinear soft tissue deformations using embedded 3D muscles. Finite Elements in Analysis and Design, 2013, 76, 63-70.	1.7	30
87	Platelet-Rich Blood Clots. Biophysical Journal, 2013, 104, 1641.	0.2	0
88	Modeling the hepatic arterial buffer response in the liver. Medical Engineering and Physics, 2013, 35, 1053-1058.	0.8	36
89	Guest Editorial Special Issue on Medical Imaging and Image Computing in Computational Physiology. IEEE Transactions on Medical Imaging, 2013, 32, 1-7.	5.4	8
90	Estimating muscle activation patterns using a surrogate model of facial biomechanics. , 2013, 2013, 7172-5.		7

#	Article	IF	CITATIONS
91	Standards and tools supporting collaborative development of the virtual physiological human. , 2013, 2013, 5541-4.		2
92	Open Access Integrated Therapeutic and Diagnostic Platforms for Personalized Cardiovascular Medicine. Journal of Personalized Medicine, 2013, 3, 203-237.	1.1	16
93	Automated Personalised Human Left Ventricular FE Models to Investigate Heart Failure Mechanics. Lecture Notes in Computer Science, 2013, , 307-316.	1.0	4
94	Data-Driven Reduction of a Cardiac Myofilament Model. Lecture Notes in Computer Science, 2013, , 232-240.	1.0	6
95	A Mean-field Model of Ventricular Muscle Tissue. Journal of Biomechanical Engineering, 2012, 134, .	0.6	4
96	Investigation of the role of crimps in collagen fibers in tendon with a microstructually based finite element model., 2012, 2012, 4871-4.		2
97	Physiology Without Borders 2. Physiology, 2012, 27, 2-2.	1.6	2
98	Integrating degenerative mechanisms in bone and cartilage: A multiscale approach., 2012, 2012, 6616-9.		3
99	Integrating knowledge representation and quantitative modelling in physiology. Biotechnology Journal, 2012, 7, 958-972.	1.8	24
100	The VPH-Physiome Project: Standards, tools and databases for multi-scale physiological modelling. Modeling, Simulation and Applications, 2012, , 205-250.	1.3	2
101	Parameters in Dynamic Models of Complex Traits are Containers of Missing Heritability. PLoS Computational Biology, 2012, 8, e1002459.	1.5	24
102	Blood Flow Simulation for the Liver after a Virtual Right Lobe Hepatectomy. Lecture Notes in Computer Science, 2012, 15, 525-532.	1.0	8
103	The influence of tissue hydration on equine hoof capsule deformation and energy storage assessed using finite element methods. Biosystems Engineering, 2012, 111, 175-185.	1.9	5
104	Numerical analysis for the blood flow in a patient-specific ophthalmic artery. Medical Engineering and Physics, 2012, 34, 123-127.	0.8	4
105	A Clustering Method for Calculating Membrane Currents in Cardiac Electrical Models. Cardiovascular Engineering and Technology, 2012, 3, 3-16.	0.7	1
106	Geometric Modelling of Patient-Specific Hepatic Structures Using Cubic Hermite Elements. Lecture Notes in Computer Science, 2012, , 264-271.	1.0	3
107	Non-newtonian Blood Flow Analysis for the Portal Vein Based on a CT Image. Lecture Notes in Computer Science, 2012, , 283-291.	1.0	5
108	A Subject-Specific Framework to Inform Musculoskeletal Modeling: Outcomes from the IUPS Physiome Project. Lecture Notes in Computational Vision and Biomechanics, 2012, , 39-60.	0.5	3

#	Article	IF	Citations
109	Human Physiome. , 2012, , 675-680.		O
110	Toward Computer Modelling of Blood Flow in an Anatomically Accurate Arterial Tree in Endovascular Interventions., 2012,, 107-118.		0
111	Systems medicine and integrated care to combat chronic noncommunicable diseases. Genome Medicine, 2011, 3, 43.	3.6	181
112	Multiscale Modeling of Intracranial Aneurysms: Cell Signaling, Hemodynamics, and Remodeling. IEEE Transactions on Biomedical Engineering, 2011, 58, 2974-2977.	2.5	12
113	A Multiscale Framework Based on the Physiome Markup Languages for Exploring the Initiation of Osteoarthritis at the Bone–Cartilage Interface. IEEE Transactions on Biomedical Engineering, 2011, 58, 3532-3536.	2.5	21
114	Blood Flow Simulation in a Giant Intracranial Aneurysm and Its Validation by Digital Subtraction Angiography., 2011, , 15-26.		5
115	BioSignalML & amp; #x2014; A meta-model for biosignals., 2011, 2011, 5670-3.		10
116	The Virtual Physiological Human. Interface Focus, 2011, 1, 281-285.	1.5	13
117	FieldML – a meta-language for field interchange. Nature Precedings, 2011, , .	0.1	0
118	Role of CellML and FieldML in VPH/Physiome Applications. Nature Precedings, 2011, , .	0.1	0
119	FieldML. Nature Precedings, 2011, , .	0.1	0
120	Genotype-phenotype map characteristics of an in silico heart cell. Frontiers in Physiology, 2011, 2, 106.	1.3	16
121	Modelling collagen fibre orientation in porcine skin based upon confocal laser scanning microscopy. Skin Research and Technology, 2011, 17, 149-159.	0.8	46
122	Coupling multi-physics models to cardiac mechanics. Progress in Biophysics and Molecular Biology, 2011, 104, 77-88.	1.4	147
123	The cardiac physiome: Foundations and future prospects for mathematical modelling of the heart. Progress in Biophysics and Molecular Biology, 2011, 104, 1.	1.4	7
124	OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project. Progress in Biophysics and Molecular Biology, 2011, 107, 32-47.	1.4	123
125	Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 2011, 107, 4-10.	1.4	7 5
126	Estimating material parameters of a structurally based constitutive relation for skin mechanics. Biomechanics and Modeling in Mechanobiology, 2011, 10, 767-778.	1.4	92

#	Article	IF	Citations
127	Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models. BMC Systems Biology, 2011, 5, 90.	3.0	48
128	Revision history aware repositories of computational models of biological systems. BMC Bioinformatics, 2011, 12, 22.	1.2	15
129	Fluid-solid coupling for the investigation of diastolic and systolic human left ventricular function. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 1017-1039.	1.0	69
130	Simulating facial expressions using anatomically accurate biomechanical model., 2011,,.		1
131	A tool for multi-scale modelling of the renal nephron. Interface Focus, 2011, 1, 417-425.	1.5	9
132	euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus, 2011, 1, 349-364.	1.5	112
133	The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics, 2011, 27, 2288-2295.	1.8	232
134	The Physiome Model Repository 2. Bioinformatics, 2011, 27, 743-744.	1.8	169
135	Integrating volumetric biomedical data in the virtual physiological human. , $2011, , .$		1
136	Minimum Information About a Simulation Experiment (MIASE). PLoS Computational Biology, 2011, 7, e1001122.	1.5	133
137	Hemodynamic Simulation for an Anatomically Realistic Portal System. Lecture Notes in Computer Science, 2011, 14, 347-354.	1.0	5
138	A Numerical Approach to Patient-Specific Cerebral Vasospasm Research., 2011, 110, 157-160.		5
139	A vision and strategy for the virtual physiological human in 2010 and beyond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2595-2614.	1.6	136
140	Sharing and reusing cardiovascular anatomical models over the Web: a step towards the implementation of the virtual physiological human project. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3039-3056.	1.6	26
141	Computer simulation of vertebral artery occlusion in endovascular procedures. International Journal of Computer Assisted Radiology and Surgery, 2010, 5, 29-37.	1.7	8
142	Changes in the calcium current among different transmural regions contributes to action potential heterogeneity in rat heart. Progress in Biophysics and Molecular Biology, 2010, 103, 28-34.	1.4	28
143	Toward a VPH/Physiome ToolKit. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 134-147.	6.6	24
144	The Physiome languages: CellML and FieldML. Nature Precedings, 2010, , .	0.1	0

#	Article	IF	CITATIONS
145	Cardiac Cellular Electrophysiological Modeling. , 2010, , 135-158.		2
146	Computer Modeling of Electrical Activation: From Cellular Dynamics to the Whole Heart. , 2010, , 159-185.		5
147	Towards a Multiscale Integrative Model of WSS-Induced Signaling Pathways in Cerebral Aneurysms. IFMBE Proceedings, 2010, , 1159-1162.	0.2	2
148	The Cardiac Atlas Project: Rationale, Design and Procedures. Lecture Notes in Computer Science, 2010, , 36-45.	1.0	0
149	Patient-Specific Hemodynamic Analysis for Proximal Protection in Carotid Angioplasty. , 2010, , 43-52.		1
150	Visualizing multiscale models of the nephron. FASEB Journal, 2010, 24, 1065.10.	0.2	0
151	The VPH-Physiome Project: Standards and Tools for Multiscale Modeling in Clinical Applications. IEEE Reviews in Biomedical Engineering, 2009, 2, 40-53.	13.1	28
152	Systems Biology and Physiome Projects. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, $1,153-158$.	6.6	27
153	The Cardiac Physiome: at the heart of coupling models to measurement. Experimental Physiology, 2009, 94, 469-471.	0.9	12
154	The Cardiac Physiome: perspectives for the future. Experimental Physiology, 2009, 94, 597-605.	0.9	99
155	Visualization of transverse diffusion paths across fiber cells of the ocular lens by small animal MRI. Physiological Measurement, 2009, 30, 1061-1073.	1.2	23
156	Sensitivity of NFAT Cycling to Cytosolic Calcium Concentration: Implications for Hypertrophic Signals in Cardiac Myocytes. Biophysical Journal, 2009, 96, 2095-2104.	0.2	38
157	CellML metadata standards, associated tools and repositories. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1845-1867.	1.6	62
158	The Virtual Kidney: an eScience interface and Grid portal. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 2141-2159.	1.6	9
159	FieldML: concepts and implementation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1869-1884.	1.6	92
160	Cellular Open Resource (COR): current status and future directions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1885-1905.	1.6	45
161	Recovery of Myocardial Kinematic Function without the Time History of External Loads. Eurasip Journal on Advances in Signal Processing, 2009, 2010, .	1.0	1
162	Computational modeling of cerebral aneurysm formation â€" framework for modeling the interaction between fluid dynamics, signal transduction pathways and arterial wall mechanics. IFMBE Proceedings, 2009, , 1894-1898.	0.2	1

#	Article	IF	CITATIONS
163	A Hybrid 1D and 3D Approach to Hemodynamics Modelling for a Patient-Specific Cerebral Vasculature and Aneurysm. Lecture Notes in Computer Science, 2009, 12, 323-330.	1.0	9
164	TRIBUTE TO A WONDERFUL MAN., 2009, , 323-325.		0
165	Myocardial material parameter estimation. Biomechanics and Modeling in Mechanobiology, 2008, 7, 161-173.	1.4	61
166	Experimental characterisation and object-oriented finite element modelling of polypropylene/organoclay nanocomposites. Composites Science and Technology, 2008, 68, 2864-2875.	3.8	71
167	Using Physiome standards to couple cellular functions for rat cardiac excitation–contraction. Experimental Physiology, 2008, 93, 919-929.	0.9	46
168	Pulmonary Gas Exchange in Anatomically-Based Models of the Lung. Advances in Experimental Medicine and Biology, 2008, 605, 184-189.	0.8	12
169	Bioinformatics, multiscale modeling and the IUPS Physiome Project. Briefings in Bioinformatics, 2008, 9, 333-343.	3.2	89
170	The CellML Model Repository. Bioinformatics, 2008, 24, 2122-2123.	1.8	235
171	Modelling biological modularity with CellML. IET Systems Biology, 2008, 2, 73-79.	0.8	35
172	Development and Validation of Patient-Specific Finite Element Models of the Hemipelvis Generated From a Sparse CT Data Set. Journal of Biomechanical Engineering, 2008, 130, 051010.	0.6	38
173	Meshfree framework for image-derived modelling. , 2008, , .		1
174	CellML and associated tools and techniques. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3017-3043.	1.6	121
175	14-3-3., 2008, , 1-1.		2
176	Modelling the Mechanical Properties of Human Skin: Towards a 3D Discrete Fibre Model. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6641-4.	0.5	2
177	Modeling Hypertrophic IP3 Transients in the Cardiac Myocyte. Biophysical Journal, 2007, 93, 3421-3433.	0.2	49
178	The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis. Journal of Biomechanics, 2007, 40, 26-35.	0.9	68
179	A Quantitative Analysis of Cardiac Myocyte Relaxation: A Simulation Study. Biophysical Journal, 2006, 90, 1697-1722.	0.2	182
180	GENE EXPRESSION OF STRETCH-ACTIVATED CHANNELS AND MECHANOELECTRIC FEEDBACK IN THE HEART. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 642-648.	0.9	63

#	Article	IF	CITATIONS
181	Modelling of Biological Systems Themed Issue. Experimental Physiology, 2006, 91, 283-284.	0.9	1
182	Modeling Cardiac Electrical Activity at the Cell and Tissue Levels. Annals of the New York Academy of Sciences, 2006, 1080, 334-347.	1.8	13
183	Multiscale modeling: physiome project standards, tools, and databases. Computer, 2006, 39, 48-54.	1.2	38
184	The Noble cardiac ventricular electrophysiology models in CellML. Progress in Biophysics and Molecular Biology, 2006, 90, 346-359.	1.4	34
185	Toward a Curated CellML Model Repository. , 2006, 2006, 4237-40.		6
186	Computational multiscale modeling in the IUPS Physiome Project: Modeling cardiac electromechanics. IBM Journal of Research and Development, 2006, 50, 617-630.	3.2	35
187	A Computational Model of Cardiac Electromechanics. , 2006, 2006, 5311-4.		9
188	The IUPS Physiome Project: Progress and Plans. , 2006, , 383-393.		3
189	Evaluation of arterial blood flow heterogeneity via an image-based computational model. , 2005, , .		2
190	An image-based computational model of ovine lung mechanics and ventilation distribution. , 2005, 5746, 84.		3
191	Computational Modeling of Ventricular Mechanics and Energetics. Applied Mechanics Reviews, 2005, 58, 77-90.	4.5	9
192	Integration from proteins to organs: the IUPS Physiome Project. Mechanisms of Ageing and Development, 2005, 126, 187-192.	2.2	63
193	Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: A finite element framework. Medical Engineering and Physics, 2005, 27, 862-870.	0.8	45
194	An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomechanics and Modeling in Mechanobiology, 2005, 4, 20-38.	1.4	88
195	Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. Journal of Applied Physiology, 2005, 99, 731-738.	1.2	114
196	Using CellML in Computational Models of Multiscale Physiology. , 2005, 2005, 6096-9.		7
197	Parameter distribution models for estimation of population based left ventricular deformation using sparse fiducial markers. IEEE Transactions on Medical Imaging, 2005, 24, 381-388.	5.4	23
198	Anatomically Based Modelling of the Human Skull and Jaw. Cells Tissues Organs, 2005, 180, 44-53.	1.3	38

#	Article	IF	CITATIONS
199	A Strategy for Integrative Computational Physiology. Physiology, 2005, 20, 316-325.	1.6	124
200	Investigation of the Relative Effects of Vascular Branching Structure and Gravity on Pulmonary Arterial Blood Flow Heterogeneity via an Image-based Computational Model1. Academic Radiology, 2005, 12, 1464-1474.	1.3	41
201	New developments in a strongly coupled cardiac electromechanical model. Europace, 2005, 7, S118-S127.	0.7	80
202	High Resolution 3D Imaging of Lung Tissue using Structured Light Microscopy., 2005, 2006, 193-5.		1
203	A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes. Mathematical Biosciences, 2005, 198, 169-189.	0.9	42
204	CT-based geometry analysis and finite element models of the human and ovine bronchial tree. Journal of Applied Physiology, 2004, 97, 2310-2321.	1.2	286
205	Computational physiology and the physiome project. Experimental Physiology, 2004, 89, 1-26.	0.9	195
206	The IUPS Physiome Project: a framework for computational physiology. Progress in Biophysics and Molecular Biology, 2004, 85, 551-569.	1.4	58
207	Extraction and Quantification of Left Ventricular Deformation Modes. IEEE Transactions on Biomedical Engineering, 2004, 51, 1923-1931.	2.5	37
208	Modeling RBC and Neutrophil Distribution Through an Anatomically Based Pulmonary Capillary Network. Annals of Biomedical Engineering, 2004, 32, 585-595.	1.3	54
209	Modeling Water Vapor and Heat Transfer in the Normal and the Intubated Airways. Annals of Biomedical Engineering, 2004, 32, 609-622.	1.3	40
210	Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomechanics and Modeling in Mechanobiology, 2004, 2, 139-155.	1.4	192
211	Multi-scale modelling and the IUPS physiome project. Journal of Molecular Histology, 2004, 35, 707-714.	1.0	32
212	Development of an in vivo method for determining material properties of passive myocardium. Journal of Biomechanics, 2004, 37, 669-678.	0.9	24
213	Multiscale computational modelling of the heart. Acta Numerica, 2004, 13, 371.	6.3	93
214	Giving Form to the Function of the Heart: Embedding Cellular Models in an Anatomical Framework. The Japanese Journal of Physiology, 2004, 54, 541-544.	0.9	2
215	A Deformable Finite Element Derived Finite Difference Method for Cardiac Activation Problems. Annals of Biomedical Engineering, 2003, 31, 577-588.	1.3	58
216	Sarcomere length changes in a 3D mathematical model of the pig ventricles. Progress in Biophysics and Molecular Biology, 2003, 82, 229-241.	1.4	57

#	Article	IF	Citations
217	Oneâ€Dimensional Rabbit Sinoatrial Node Models:. Journal of Cardiovascular Electrophysiology, 2003, 14, S121-S132.	0.8	74
218	Integration from proteins to organs: the Physiome Project. Nature Reviews Molecular Cell Biology, 2003, 4, 237-243.	16.1	411
219	Ventricular mechanics in diastole: material parameter sensitivity. Journal of Biomechanics, 2003, 36, 737-748.	0.9	117
220	Modeling Total Heart Function. Annual Review of Biomedical Engineering, 2003, 5, 147-177.	5.7	250
221	NEW DEVELOPMENTS IN AN ANATOMICAL FRAMEWORK FOR MODELING CARDIAC ISCHEMIA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 3717-3722.	0.7	1
222	Cardiac Microstructure. Circulation Research, 2002, 91, 331-338.	2.0	238
223	An Anatomically Based Model of Transient Coronary Blood Flow in the Heart. SIAM Journal on Applied Mathematics, 2002, 62, 990-1018.	0.8	291
224	A Finite Element Method for an Eikonal Equation Model of Myocardial Excitation Wavefront Propagation. SIAM Journal on Applied Mathematics, 2002, 63, 324-350.	0.8	78
225	Modelling and visualising the heart. Computing and Visualization in Science, 2002, 4, 227-235.	1.2	33
226	Mathematical modelling of the heart: cell to organ. Chaos, Solitons and Fractals, 2002, 13, 1613-1621.	2.5	45
227	The IUPS human physiome project. Pflugers Archiv European Journal of Physiology, 2002, 445, 1-9.	1.3	159
228	The architecture of the heart: a data–based model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2001, 359, 1217-1232.	1.6	97
229	Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respiration Physiology, 2001, 127, 241-248.	2.8	38
230	Multibreath washout analysis: modelling the influence of conducting airway asymmetry. Respiration Physiology, 2001, 127, 249-258.	2.8	41
231	Computational Mechanics of the Heart. , 2000, 61, 113-141.		317
232	Generation of an Anatomically Based Geometric Coronary Model. Annals of Biomedical Engineering, 2000, 28, 14-25.	1.3	94
233	Computational modelling of biological systems: tools and visions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 579-610.	1.6	84
234	Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Progress in Biophysics and Molecular Biology, 1999, 71, 91-138.	1.4	249

#	Article	IF	CITATIONS
235	Editorial. Progress in Biophysics and Molecular Biology, 1998, 69, 153-155.	1.4	45
236	Modelling the mechanical properties of cardiac muscle. Progress in Biophysics and Molecular Biology, 1998, 69, 289-331.	1.4	407
237	Large deformation mechanical testing of biological membranes using speckle interferometry in transmission II: Finite element modeling. Applied Optics, 1997, 36, 2246.	2.1	6
238	Ophthalmic microsurgical robot and associated virtual environment. Computers in Biology and Medicine, 1995, 25, 173-182.	3.9	62
239	Myocardial Constitutive Laws for Continuum Mechanics Models of the Heart. Advances in Experimental Medicine and Biology, 1995, 382, 303-318.	0.8	37
240	A virtual environment and model of the eye for surgical simulation. , 1994, , .		93
241	A Teleoperated Microsurgical Robot and Associated Virtual Environment for Eye Surgery. Presence: Teleoperators and Virtual Environments, 1993, 2, 265-280.	0.3	128
242	Estimation of epicardial strain using the motions of coronary bifurcations in biplane cineangiography. IEEE Transactions on Biomedical Engineering, 1992, 39, 526-531.	2.5	47
243	Structure and Function of the Diastolic Heart: Material Properties of Passive Myocardium. Institute for Nonlinear Science, 1991, , 1-29.	0.2	40
244	There is a theory of heart. Physica D: Nonlinear Phenomena, 1990, 43, 1-16.	1.3	34
245	Epicardial surface estimation from coronary angiograms. Computer Vision, Graphics, and Image Processing, 1989, 47, 111-127.	1.1	48
246	The analysis of cardiac function: A continuum approach. Progress in Biophysics and Molecular Biology, 1988, 52, 101-164.	1.4	172
247	The long term implications and constraints of alternate energy policies. Energy, 1976, 1, 375-406.	4.5	2
248	The UnEmap project. , 0, , .		1