Federico Baiutti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2233691/publications.pdf

Version: 2024-02-01

687363 713466 44 491 13 21 citations h-index g-index papers 50 50 50 592 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring point defects and trap states in undoped SrTiO3 single crystals. Journal of the European Ceramic Society, 2022, 42, 1510-1521.	5 . 7	14
2	WhatEELS. A python-based interactive software solution for ELNES analysis combining clustering and NLLS. Ultramicroscopy, 2022, 232, 113403.	1.9	3
3	Tailored nano-columnar La ₂ NiO ₄ cathodes for improved electrode performance. Journal of Materials Chemistry A, 2022, 10, 2528-2540.	10.3	13
4	Visualizing local fast ionic conduction pathways in nanocrystalline lanthanum manganite by isotope exchange-atom probe tomography. Journal of Materials Chemistry A, 2022, 10, 2228-2234.	10.3	4
5	On the thermoelectric properties of Nb-doped SrTiO ₃ epitaxial thin films. Physical Chemistry Chemical Physics, 2022, 24, 3741-3748.	2.8	9
6	Surface chemistry and porosity engineering through etching reveal ultrafast oxygen reduction kinetics below 400°C in B-site exposed (La,Sr)(Co,Fe)O3 thin-films. Journal of Power Sources, 2022, 523, 230983.	7.8	8
7	Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devices. ACS Applied Materials & amp; Interfaces, 2022, 14, 18486-18497.	8.0	4
8	Nanoscaled LiMn ₂ O ₄ for Extended Cycling Stability in the 3 V Plateau. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33438-33446.	8.0	6
9	Route to High-Performance Micro-solid Oxide Fuel Cells on Metallic Substrates. ACS Applied Materials & Interfaces, 2021, 13, 4117-4125.	8.0	9
10	Cation non-stoichiometry in Fe:SrTiO ₃ thin films and its effect on the electrical conductivity. Nanoscale Advances, 2021, 3, 6114-6127.	4.6	4
11	Defect energetics in the SrTiO3-LaCrO3 system. Solid State Ionics, 2021, 361, 115570.	2.7	9
12	A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells. Nature Communications, 2021, 12, 2660.	12.8	37
13	Thin Film Barrier Layers with Increased Performance and Reduced Long-Term Degradation in SOFCs. ECS Transactions, 2021, 103, 1177-1185.	0.5	0
14	Interstitial lithium doping in SrTiO ₃ . AIP Advances, 2021, 11, 075029.	1.3	2
15	Nanoscale tracking of oxygen diffusion pathways in oxide ion conductors. Microscopy and Microanalysis, 2021, 27, 180-181.	0.4	0
16	Tailoring the Transport Properties of Mesoporous Doped Cerium Oxide for Energy Applications. Journal of Physical Chemistry C, 2021, 125, 16451-16463.	3.1	5
17	SrTiO3 based high temperature solid oxide solar cells: Photovoltages, photocurrents and mechanistic insight. Solid State Ionics, 2021, 368, 115700.	2.7	10
18	Direct Measurement of Oxygen Mass Transport at the Nanoscale. Advanced Materials, 2021, 33, e2105622.	21.0	11

#	Article	IF	Citations
19	Solid Oxide Cell Electrode Nanocomposites Fabricated by Inkjet Printing Infiltration of Ceria Scaffolds. Nanomaterials, 2021, 11, 3435.	4.1	3
20	Co-electrolysis of steam and carbon dioxide in large area solid oxide cells based on infiltrated mesoporous oxygen electrodes. Journal of Power Sources, 2020, 478, 228774.	7.8	15
21	Atomic-scale Identification of High-temperature Superconductivity at La2CuO4 Interfaces. Microscopy and Microanalysis, 2020, 26, 738-739.	0.4	0
22	Atomic-scale Considerations on LaNiO3-La2CuO4 Heterostructures: Interfaceâ€"thermoelectricity Relationship. Microscopy and Microanalysis, 2020, 26, 2626-2627.	0.4	0
23	Nanostructured Materials and Interfaces for Advanced Ionic Electronic Conducting Oxides. Advanced Materials Interfaces, 2019, 6, 1900462.	3.7	39
24	Improved mesostructured oxygen electrodes for highly performing solid oxide cells for co-electrolysis of steam and carbon dioxide. Journal of Materials Chemistry A, 2019, 7, 27458-27468.	10.3	11
25	Engineering mass transport properties in oxide ionic and mixed ionic-electronic thin film ceramic conductors for energy applications. Journal of the European Ceramic Society, 2019, 39, 101-114.	5.7	24
26	Control of dopant crystallinity in electrochemically treated cuprate thin films. Physical Review Materials, 2019, 3, .	2.4	5
27	Superconductivity drives magnetism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î</mml:mi></mml:math> -doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:n< td=""><td>3.2 1n>2<td>18 nl:mn></td></td></mml:n<></mml:msub></mml:mrow></mml:math>	3.2 1n>2 <td>18 nl:mn></td>	18 nl:mn>
28	Unexpected effects of thickness and strain on superconductivity and magnetism in optimally doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:n .<="" 2018,="" 97,="" b,="" films.="" physical="" review="" td="" thin=""><td>nro₩>≀cmn</td><td>nl:mn>1.84<!--</td--></td></mml:n></mml:msub></mml:mrow></mml:math 	nro₩>≀cmn	nl:mn>1.84 </td
29	High-temperature superconductivity at the lanthanum cuprate/lanthanum–strontium nickelate interface. Nanoscale, 2018, 10, 8712-8720.	5.6	12
30	Infiltrated mesoporous oxygen electrodes for high temperature co-electrolysis of H ₂ O and CO ₂ in solid oxide electrolysis cells. Journal of Materials Chemistry A, 2018, 6, 9699-9707.	10.3	29
31	Oxide molecular beam epitaxy of complex oxide heterointerfaces. , 2018, , 53-78.		4
32	High-Temperature Thermoelectricity in LaNiO ₃ –La ₂ CuO ₄ Heterostructures. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22786-22792.	8.0	12
33	Probing Jahn-Teller Distortions at Superconducting La2CuO4 Interfaces. Microscopy and Microanalysis, 2018, 24, 78-79.	0.4	1
34	Influence of Substrate Temperature and Dopant Distribution at Two-Dimensionally Doped Superconducting La2CuO4 Interfaces. Microscopy and Microanalysis, 2017, 23, 1570-1571.	0.4	0
35	Dopant size effects on novel functionalities: High-temperature interfacial superconductivity. Scientific Reports, 2017, 7, 453.	3.3	28
36	Octahedral Distortions at Highâ€Temperature Superconducting La ₂ CuO ₄ Interfaces: Visualizing Jahn–Teller Effects. Advanced Materials Interfaces, 2017, 4, 1700737.	3.7	15

#	Article	IF	CITATIONS
37	Superconducting Interfaces: Octahedral Distortions at Highâ€Temperature Superconducting La ₂ CuO ₄ Interfaces: Visualizing Jahn–Teller Effects (Adv. Mater. Interfaces) Tj ETQq1	130778431	4 rgBT /Ove
38	Visualizing Interface Effects in Two-dimensionally Doped La2CuO4 and La2CuO4/ La2-xSrxNiO4 Superlattices. Microscopy and Microanalysis, 2016, 22, 268-269.	0.4	0
39	Atomic-Scale Quantitative Analysis of Lattice Distortions at Interfaces of Two-Dimensionally Sr-Doped La ₂ CuO ₄ Superlattices. ACS Applied Materials & Sup	8.0	16
40	Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27368-27375.	8.0	19
41	Atomic-Scale Quantitative and Analytical STEM Investigation of Sr-Î'-Doped La2CuO4 Multilayers. Microscopy and Microanalysis, 2015, 21, 2071-2072.	0.4	0
42	High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping. Nature Communications, 2015, 6, 8586.	12.8	53
43	Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy. Beilstein Journal of Nanotechnology, 2014, 5, 596-602.	2.8	31
44	Direct Observation of Asymmetric Sr Diffusion in Sr-Î'-Doped La2CuO4. Microscopy and Microanalysis, 2014, 20, 168-169.	0.4	1