
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2233554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Progress in Energy and Combustion Science, 2021, 84, 100901.	31.2	297
2	Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Progress in Materials Science, 2020, 114, 100617.	32.8	267
3	The strength of multi-scale modeling to unveil the complexity of radical polymerization. Progress in Polymer Science, 2016, 58, 59-89.	24.7	174
4	Linear Gradient Quality of ATRP Copolymers. Macromolecules, 2012, 45, 8519-8531.	4.8	139
5	The Crucial Role of Diffusional Limitations in Controlled Radical Polymerization. Macromolecular Reaction Engineering, 2013, 7, 362-379.	1.5	122
6	Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly(lactic acid) filaments into 3D printed materials?. Plastics, Rubber and Composites, 2018, 47, 9-16.	2.0	116
7	Model-based design of the polymer microstructure: bridging the gap between polymer chemistry and engineering. Polymer Chemistry, 2015, 6, 7081-7096.	3.9	94
8	ARGET ATRP of Butyl Methacrylate: Utilizing Kinetic Modeling To Understand Experimental Trends. Macromolecules, 2013, 46, 3828-3840.	4.8	90
9	Methodology for Kinetic Modeling of Atom Transfer Radical Polymerization. Macromolecular Reaction Engineering, 2009, 3, 185-209.	1.5	85
10	Origin of the Difference between Branching in Acrylates Polymerization under Controlled and Free Radical Conditions: A Computational Study of Competitive Processes. Macromolecules, 2011, 44, 8361-8373.	4.8	84
11	Kinetic Modeling of ICAR ATRP. Macromolecular Theory and Simulations, 2012, 21, 52-69.	1.4	84
12	Computational prediction of the molecular configuration of three-dimensional network polymers. Nature Materials, 2021, 20, 1422-1430.	27.5	84
13	Kinetic Modeling of Radical Thiol–Ene Chemistry for Macromolecular Design: Importance of Side Reactions and Diffusional Limitations. Macromolecules, 2013, 46, 1732-1742.	4.8	78
14	Improved Livingness and Control over Branching in RAFT Polymerization of Acrylates: Could Microflow Synthesis Make the Difference?. Macromolecular Rapid Communications, 2015, 36, 2149-2155.	3.9	67
15	Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains. Polymers, 2014, 6, 1074-1095.	4.5	64
16	Systematic investigation of alkyl sulfonate initiators for the cationic ring-opening polymerization of 2-oxazolines revealing optimal combinations of monomers and initiators. European Polymer Journal, 2015, 65, 298-304.	5.4	63
17	MAMA-SG1 initiated nitroxide mediated polymerization of styrene: From Arrhenius parameters to model-based design. Chemical Engineering Journal, 2015, 278, 407-420.	12.7	62
18	Progress in Reaction Mechanisms and Reactor Technologies for Thermochemical Recycling of Poly(methyl methacrylate). Polymers, 2020, 12, 1667.	4.5	62

#	Article	IF	CITATIONS
19	The Long and the Short of Radical Polymerization. Macromolecules, 2015, 48, 492-501.	4.8	57
20	Gillespie-Driven kinetic Monte Carlo Algorithms to Model Events for Bulk or Solution (Bio)Chemical Systems Containing Elemental and Distributed Species. Industrial & Engineering Chemistry Research, 2020, 59, 18357-18386.	3.7	56
21	Kinetic Monte Carlo Modeling of the Sulfinyl Precursor Route for Poly(<i>p</i> -phenylene vinylene) Synthesis. Macromolecules, 2011, 44, 8716-8726.	4.8	55
22	Kinetic Monte Carlo Modeling Extracts Information on Chain Initiation and Termination from Complete PLP-SEC Traces. Macromolecules, 2017, 50, 1371-1385.	4.8	54
23	An Update on the Pivotal Role of Kinetic Modeling for the Mechanistic Understanding and Design of Bulk and Solution RAFT Polymerization. Macromolecular Theory and Simulations, 2017, 26, 1600048.	1.4	54
24	The Nanoreactor Concept: Kinetic Features of Compartmentalization in Dispersed Phase Polymerization. Macromolecules, 2019, 52, 7963-7976.	4.8	53
25	Designing formulation variables of extrusion-based manufacturing of carbon black conductive polymer composites for piezoresistive sensing. Composites Science and Technology, 2019, 171, 78-85.	7.8	53
26	Connecting polymer synthesis and chemical recycling on a chain-by-chain basis: a unified matrix-based kinetic Monte Carlo strategy. Reaction Chemistry and Engineering, 2020, 5, 1909-1928.	3.7	53
27	Model-Based Design To Push the Boundaries of Sequence Control. Macromolecules, 2016, 49, 9336-9344.	4.8	51
28	Atom Transfer Radical Polymerization of Isobornyl Acrylate: A Kinetic Modeling Study. Macromolecules, 2010, 43, 8766-8781.	4.8	49
29	Kinetic Modeling as a Tool to Understand and Improve the Nitroxide Mediated Polymerization of Styrene. Macromolecular Theory and Simulations, 2011, 20, 238-265.	1.4	49
30	Simulation of the Degradation of Cyclic Ketene Acetal and Vinylâ€Based Copolymers Synthesized via a Radical Process: Influence of the Reactivity Ratios on the Degradability Properties. Macromolecular Rapid Communications, 2018, 39, e1800193.	3.9	47
31	Visualization and design of the functional group distribution during statistical copolymerization. Nature Communications, 2019, 10, 3641.	12.8	46
32	Kinetic Monte Carlo Generation of Complete Electron Spray Ionization Mass Spectra for Acrylate Macromonomer Synthesis. Macromolecules, 2017, 50, 2625-2636.	4.8	45
33	Facile and Low-Cost Route for Sensitive Stretchable Sensors by Controlling Kinetic and Thermodynamic Conductive Network Regulating Strategies. ACS Applied Materials & Interfaces, 2018, 10, 22678-22691.	8.0	45
34	Modeling the reaction event history and microstructure of individual macrospecies in postpolymerization modification. AICHE Journal, 2017, 63, 4944-4961.	3.6	43
35	Visibleâ€Lightâ€Induced Passerini Multicomponent Polymerization. Angewandte Chemie - International Edition, 2019, 58, 5672-5676.	13.8	43
36	A Theoretical Exploration of the Potential of ICAR ATRP for One―and Twoâ€Pot Synthesis of Wellâ€Đefined Diblock Copolymers. Macromolecular Reaction Engineering, 2013, 7, 311-326.	1.5	42

#	Article	IF	CITATIONS
37	4-Dimensional Modeling Strategy for an Improved Understanding of Miniemulsion NMP of Acrylates Initiated by SG1-Macroinitiator. Macromolecules, 2014, 47, 7732-7741.	4.8	41
38	Fusing Light-Induced Step-Growth Processes with RAFT Chemistry for Segmented Copolymer Synthesis: A Synergetic Experimental and Kinetic Modeling Study. Macromolecules, 2017, 50, 6451-6467.	4.8	41
39	A complete understanding of the reaction kinetics for the industrial production process of expandable polystyrene. AICHE Journal, 2017, 63, 2043-2059.	3.6	41
40	State of theâ€Art for Extrudate Swell of Molten Polymers: From Fundamental Understanding at Molecular Scale toward Optimal Die Design at Final Product Scale. Macromolecular Materials and Engineering, 2020, 305, 2000340.	3.6	41
41	Computerâ€Aided Optimization of Conditions for Fast and Controlled ICAR ATRP of <i>n</i> â€Butyl Acrylate. Macromolecular Theory and Simulations, 2013, 22, 136-149.	1.4	40
42	Improving Mechanical Properties for Extrusion-Based Additive Manufacturing of Poly(Lactic Acid) by Annealing and Blending with Poly(3-Hydroxybutyrate). Polymers, 2019, 11, 1529.	4.5	40
43	Evaluating and predicting molecular mechanisms of adhesive degradation during field and accelerated aging of photovoltaic modules. Progress in Photovoltaics: Research and Applications, 2018, 26, 981-993.	8.1	38
44	From <i>n</i> -butyl acrylate Arrhenius parameters for backbiting and tertiary propagation to β-scission <i>via</i> stepwise pulsed laser polymerization. Polymer Chemistry, 2019, 10, 4116-4125.	3.9	38
45	Analytical and advanced kinetic models for characterization of chain-growth copolymerization: the state-of-the-art. Reaction Chemistry and Engineering, 2018, 3, 128-145.	3.7	37
46	Importance of Radical Transfer in Precipitation Polymerization: The Case of Vinyl Chloride Suspension Polymerization. Macromolecular Reaction Engineering, 2009, 3, 16-35.	1.5	35
47	How penultimate monomer unit effects and initiator influence ICAR ATRP of <i>n</i> â€butyl acrylate and methyl methacrylate. AICHE Journal, 2017, 63, 4971-4986.	3.6	35
48	<i>Ab initio</i> based kinetic Monte Carlo analysis to unravel the propagation kinetics in vinyl acetate pulsed laser polymerization. Polymer Chemistry, 2017, 8, 7143-7150.	3.9	35
49	How chain length dependencies interfere with the bulk RAFT polymerization rate and microstructural control. Chemical Engineering Science, 2018, 177, 163-179.	3.8	35
50	Effect of Matrix and Graphite Filler on Thermal Conductivity of Industrially Feasible Injection Molded Thermoplastic Composites. Polymers, 2019, 11, 87.	4.5	35
51	Coupled matrix kinetic Monte Carlo simulations applied for advanced understanding of polymer grafting kinetics. Reaction Chemistry and Engineering, 2021, 6, 640-661.	3.7	35
52	The relevance of material and processing parameters on the thermal conductivity of thermoplastic composites. Polymer Engineering and Science, 2018, 58, 466-474.	3.1	34
53	ICAR ATRP for Estimation of Intrinsic Macro-Activation/Deactivation Arrhenius Parameters under Polymerization Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 9674-9685.	3.7	33
54	Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-oxazoline)s On the basis of 2-Methyl-2-oxazoline and 2-Phenyl-2-oxazoline. Macromolecules, 2015, 48, 7765-7773.	4.8	33

#	Article	IF	CITATIONS
55	Benchmarking Stochastic and Deterministic Kinetic Modeling of Bulk and Solution Radical Polymerization Processes by Including Six Types of Factors Two. Macromolecular Theory and Simulations, 2020, 29, 2000065.	1.4	32
56	Conformational Distributions near and on the Substrate during Surface-Initiated Living Polymerization: A Lattice-Based Kinetic Monte Carlo Approach. Macromolecules, 2020, 53, 4630-4648.	4.8	32
57	In Silico Tracking of Individual Species Accelerating Progress in Macromolecular Engineering and Design. Macromolecular Rapid Communications, 2018, 39, e1800057.	3.9	31
58	Waterborne Electrospinning of Poly(<i>N</i> -isopropylacrylamide) by Control of Environmental Parameters. ACS Applied Materials & amp; Interfaces, 2017, 9, 24100-24110.	8.0	29
59	Two-compartment kinetic Monte Carlo modelling of electrochemically mediated ATRP. Reaction Chemistry and Engineering, 2018, 3, 866-874.	3.7	28
60	Silica Nanofibrous Membranes for the Separation of Heterogeneous Azeotropes. Advanced Functional Materials, 2018, 28, 1804138.	14.9	28
61	Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios. Physics of Fluids, 2019, 31, .	4.0	28
62	Controlled synthesis of poly[(butyl methacrylate)â€ <i>co</i> â€(butyl acrylate)] via activator regenerated by electron transfer atom transfer radical polymerization: insights and improvement. Polymer International, 2014, 63, 848-857.	3.1	27
63	A two-phase stochastic model to describe mass transport and kinetics during reactive processing of polyolefins. Chemical Engineering Journal, 2019, 377, 119980.	12.7	27
64	An alternative method to estimate the bulk backbiting rate coefficient in acrylate radical polymerization. Polymer Chemistry, 2016, 7, 6521-6528.	3.9	26
65	Impact of side reactions on molar mass distribution, unsaturation level and branching density in solution free radical polymerization of <i>n</i> butyl acrylate under well-defined lab-scale reactor conditions. Polymer Chemistry, 2021, 12, 2095-2114.	3.9	26
66	Access to the β-scission rate coefficient in acrylate radical polymerization by careful scanning of pulse laser frequencies at elevated temperature. Reaction Chemistry and Engineering, 2018, 3, 807-815.	3.7	25
67	Exploring the Full Potential of Reversible Deactivation Radical Polymerization Using Pareto-Optimal Fronts. Polymers, 2015, 7, 655-679.	4.5	24
68	Chain Transfer in Degenerative RAFT Polymerization Revisited: A Comparative Study of Literature Methods. Macromolecular Theory and Simulations, 2016, 25, 104-115.	1.4	24
69	Coupled stochastic simulation of the chain length and particle size distribution in miniemulsion radical copolymerization of styrene and <i>N</i> -vinylcaprolactam. Reaction Chemistry and Engineering, 2019, 4, 1935-1947.	3.7	24
70	Melt exit flow modelling and experimental validation for fused filament fabrication: From Newtonian to non-Newtonian effects. Journal of Manufacturing Processes, 2022, 77, 138-150.	5.9	24
71	A detailed mechanistic study of bulk MADIX of styrene and its chain extension. Polymer Chemistry, 2017, 8, 6948-6963.	3.9	23
72	Theoretical Evaluation of the Melting Efficiency for the Single-Screw Micro-Extrusion Process: The Case of 3D Printing of ABS. Processes, 2020, 8, 1522.	2.8	23

#	Article	IF	CITATIONS
73	Influence of Different Stabilization Systems and Multiple Ultraviolet A (UVA) Aging/Recycling Steps on Physicochemical, Mechanical, Colorimetric, and Thermal-Oxidative Properties of ABS. Materials, 2020, 13, 212.	2.9	23
74	Costâ€efficient modeling of distributed molar mass and topological variations in graft copolymer synthesis by upgrading the method of moments. AICHE Journal, 2022, 68, .	3.6	23
75	Isothermal flow of neat polypropylene through a slit die and its die swell: Bridging experiments and 3D numerical simulations. Journal of Non-Newtonian Fluid Mechanics, 2019, 266, 33-45.	2.4	22
76	Jacket temperature regulation allowing well-defined non-adiabatic lab-scale solution free radical polymerization of acrylates. Reaction Chemistry and Engineering, 2021, 6, 1053-1069.	3.7	22
77	Stateâ€Ofâ€Theâ€Art Quantification of Polymer Solution Viscosity for Plastic Waste Recycling. ChemSusChem, 2021, 14, 4071-4102.	6.8	22
78	A Light-Activated Reaction Manifold. Journal of the American Chemical Society, 2016, 138, 7048-7054.	13.7	21
79	Roadmap for Monomer Conversion and Chain Length-Dependent Termination Reactivity Algorithms in Kinetic Monte Carlo Modeling of Bulk Radical Polymerization. Industrial & Engineering Chemistry Research, 2020, 59, 22422-22439.	3.7	21
80	New Insights in the Treatment of Waste Water with Graphene: Dual-Site Adsorption by Sodium Dodecylbenzenesulfonate. Industrial & Engineering Chemistry Research, 2016, 55, 9387-9396.	3.7	20
81	A Statistical Analysis on the Effect of Antioxidants on the Thermal-Oxidative Stability of Commercial Mass- and Emulsion-Polymerized ABS. Polymers, 2019, 11, 25.	4.5	20
82	Estimating the photodissociation quantum yield from PLP-SEC peak heights. Polymer Chemistry, 2017, 8, 3124-3128.	3.9	19
83	Timeâ€Dependent Differential and Integral Quantum Yields for Wavelengthâ€Dependent [4+4] Photocycloadditions. Chemistry - A European Journal, 2020, 26, 478-484.	3.3	19
84	Evaluating the exit pressure method for measurements of normal stress difference at high shear rates. Journal of Rheology, 2020, 64, 739-750.	2.6	19
85	Translating Simulated Chain Length and Molar Mass Distributions in Chainâ€Growth Polymerization for Experimental Comparison and Mechanistic Insight. Macromolecular Theory and Simulations, 2021, 30, 2100008.	1.4	19
86	Bridging principal component analysis and method of moments based parameter estimation for grafting of polybutadiene with styrene. Chemical Engineering Journal, 2021, 425, 130463.	12.7	19
87	Interplay of Head, Tail, and Mid-Chain Radicals in Bulk Free-Radical and Reversible Degenerative Addition Fragmentation Chain-Transfer Polymerizations of Vinyl Acetate. Macromolecules, 2019, 52, 4555-4569.	4.8	18
88	A kinetic study on the <i>para</i> -fluoro-thiol reaction in view of its use in materials design. Polymer Chemistry, 2019, 10, 2781-2791.	3.9	18
89	Extending Multilevel Statistical Entropy Analysis towards Plastic Recyclability Prediction. Sustainability, 2021, 13, 3553.	3.2	18
90	Connecting Gas-Phase Computational Chemistry to Condensed Phase Kinetic Modeling: The State-of-the-Art. Polymers, 2021, 13, 3027.	4.5	18

#	Article	IF	CITATIONS
91	Synergy of Advanced Experimental and Modeling Tools to Underpin the Synthesis of Static Step-Growth-Based Networks Involving Polymeric Precursor Building Blocks. Macromolecules, 2021, 54, 9280-9298.	4.8	18
92	Multi-scale reactive extrusion modelling approaches to design polymer synthesis, modification and mechanical recycling. Reaction Chemistry and Engineering, 2022, 7, 245-263.	3.7	18
93	Excellent Nanofiber Adhesion for Hybrid Polymer Materials with High Toughness Based on Matrix Interdiffusion During Chemical Conversion. Advanced Functional Materials, 2019, 29, 1807434.	14.9	17
94	Macropropagation Rate Coefficients and Branching Levels in Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline through Prediction of Size Exclusion Chromatography Data. Macromolecules, 2019, 52, 4067-4078.	4.8	17
95	Degradation kinetics of isoproturon and its subsequent products in contact with TiO2 functionalized silica nanofibers. Chemical Engineering Journal, 2020, 387, 124143.	12.7	17
96	Going Beyond the Carothers, Flory and Stockmayer Equation by Including Cyclization Reactions and Mobility Constraints. Polymers, 2021, 13, 2410.	4.5	17
97	Improved Mechanistic Insights into Radical Sulfinyl Precursor MDMO-PPV Synthesis by Combining Microflow Technology and Computer Simulations. Macromolecules, 2015, 48, 8294-8306.	4.8	16
98	Comparative Kinetic Monte Carlo study of the Sulfinyl and Dithiocarbamate Precursor Route toward Highly Regioregular MDMOâ€₽PV. Macromolecular Theory and Simulations, 2013, 22, 246-255.	1.4	15
99	An evaluation of the impact of SG1 disproportionation and the addition of styrene in NMP of methyl methacrylate. AICHE Journal, 2018, 64, 2545-2559.	3.6	15
100	Deterministic Modeling of Degenerative RAFT Miniemulsion Polymerization Rate and Average Polymer Characteristics: Invalidity of Zero–One Nature at Higher Monomer Conversions. Macromolecules, 2018, 51, 9442-9461.	4.8	14
101	Composite Materials: Excellent Nanofiber Adhesion for Hybrid Polymer Materials with High Toughness Based on Matrix Interdiffusion During Chemical Conversion (Adv. Funct. Mater. 8/2019). Advanced Functional Materials, 2019, 29, 1970051.	14.9	14
102	Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules, 2021, 54, 8270-8288.	4.8	14
103	Elegant design of carbon nanotube foams with double continuous structure for metamaterials in a broad frequency range. Journal of Materials Chemistry C, 2020, 8, 3226-3234.	5.5	14
104	Sensitivity Analysis of Singleâ€₽hase Isothermal Free Radical–Induced Grafting of Polyethylene. Macromolecular Theory and Simulations, 2018, 27, 1800036.	1.4	13
105	Modeling of Miniemulsion Polymerization of Styrene with Macro-RAFT Agents to Theoretically Compare Slow Fragmentation, Ideal Exchange and Cross-Termination Cases. Polymers, 2019, 11, 320.	4.5	13
106	The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization. Polymers, 2020, 12, 1409.	4.5	13
107	Distribution Changes during Thermal Degradation of Poly(styrene peroxide) by Pairing Tree-Based Kinetic Monte Carlo and Artificial Intelligence Tools. Industrial & Engineering Chemistry Research, 2021, 60, 3334-3353.	3.7	13
108	Abâ€Initioâ€Based Kinetic Modeling to Understand RAFT Exchange: The Case of 2â€Cyanoâ€2â€Propyl Dodecyl Trithiocarbonate and Styrene. Macromolecular Rapid Communications, 2018, 39, 1700403.	3.9	12

#	Article	IF	CITATIONS
109	A holistic approach for anthracene photochemistry kinetics. Chemical Engineering Journal, 2020, 402, 126259.	12.7	11
110	Sensitivity analysis of isothermal free radical induced grafting through application of the distribution - Numerical fractionation - Method of moments. Chemical Engineering Journal, 2022, 444, 136595.	12.7	11
111	The impact of upstream contraction flow on three-dimensional polymer extrudate swell from slit dies. Journal of Non-Newtonian Fluid Mechanics, 2020, 282, 104337.	2.4	10
112	A Combined Experimental and Modeling Study for Pellet-Fed Extrusion-Based Additive Manufacturing to Evaluate the Impact of the Melting Efficiency. Materials, 2021, 14, 5566.	2.9	10
113	A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polymer Chemistry, 2022, 13, 1559-1575.	3.9	10
114	The Transferability and Design of Commercial Printer Settings in PLA/PBAT Fused Filament Fabrication. Polymers, 2020, 12, 2573.	4.5	9
115	Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2- <i>n</i> -propyl-2-oxazoline). Macromolecules, 2020, 53, 7590-7600.	4.8	9
116	Molecularly Imprinted Polymers with Enhanced Selectivity Based on 4-(Aminomethyl)pyridine-Functionalized Poly(2-oxazoline)s for Detecting Hazardous Herbicide Contaminants. Chemistry of Materials, 2022, 34, 84-96.	6.7	9
117	Assessment of end-group functionality in atom transfer radical polymerization of N-isopropylacrylamide. European Polymer Journal, 2013, 49, 2344-2355.	5.4	8
118	A novel method for the measurement of degenerative chain transfer coefficients: proof of concept and experimental validation. Polymer Chemistry, 2016, 7, 3334-3349.	3.9	8
119	The Relevance of Multiâ€Injection and Temperature Profiles to Design Multiâ€Phase Reactive Processing of Polyolefins. Macromolecular Theory and Simulations, 2019, 28, 1900035.	1.4	8
120	Fused filament fabrication of copolyesters by understanding the balance of inter- and intra-layer welding. Plastics, Rubber and Composites, 2022, 51, 126-132.	2.0	8
121	Exploiting (Multicomponent) Semibatch and Jacket Temperature Procedures to Safely Tune Molecular Properties for Solution Free Radical Polymerization of <i>n</i> â€Butyl Acrylate. Macromolecular Theory and Simulations, 2021, 30, 2100024.	1.4	8
122	Influence of machine type and consecutive closed-loop recycling on macroscopic properties for fused filament fabrication of acrylonitrile-butadiene-styrene parts. Rapid Prototyping Journal, 2021, 27, 268-277.	3.2	8
123	Procedures and Guidelines for Inputting and Output Smoothening of Kinetic Monte Carlo Distributions. Advanced Theory and Simulations, 2022, 5, .	2.8	7
124	Tuning Polymer Properties through Competitive Processes. ACS Symposium Series, 2012, , 145-169.	0.5	6
125	Toward More Universal Prediction of Polymer Solution Viscosity for Solvent-Based Recycling. Industrial & Engineering Chemistry Research, 2022, 61, 10999-11011.	3.7	6
126	Combining carbon nanotube foam with nanosilver/silicone resin or graphene foam for advanced metamaterial design. Journal of Materials Science, 2020, 55, 16211-16219.	3.7	4

#	Article	IF	CITATIONS
127	Exploiting the pulsed laser polymerization-size exclusion chromatography technique to retrieve kinetic parameters in radical polymerization: State-of-the-art and future challenges. Advances in Chemical Engineering, 2020, , 59-95.	0.9	4
128	In Silico Screening To Achieve Fast Lab-Scale Nitroxide-Mediated Polymerization of <i>n</i> -Butyl Acrylate with Maximal Control over Macromolecular Properties. Industrial & Engineering Chemistry Research, 2021, 60, 16981-16992.	3.7	4
129	Setting the Optimal Laser Power for Sustainable Powder Bed Fusion Processing of Elastomeric Polyesters: A Combined Experimental and Theoretical Study. Materials, 2022, 15, 385.	2.9	4
130	Optimising open and closed cooling time for hybrid injection moulding of polypropylene with polyamide inserts from multi jet fusion. Plastics, Rubber and Composites, 2021, 50, 137-145.	2.0	3
131	Differences and similarities between mono-, bi- or tetrafunctional initiated cationic ring-opening polymerization of 2-oxazolines. Polymer Chemistry, 2022, 13, 861-876.	3.9	3
132	Increasing the Sustainability of the Hybrid Mold Technique through Combined Insert Polymeric Material and Additive Manufacturing Method Design. Sustainability, 2022, 14, 877.	3.2	3
133	Visibleâ€Lightâ€Induced Passerini Multicomponent Polymerization. Angewandte Chemie, 2019, 131, 5728-5732.	2.0	2
134	Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. Materials, 2021, 14, 6939.	2.9	2
135	From identifying polymeric resins to corrosion casting applications. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
136	Principles and Guidelines for In-Line Viscometry in Cereal Extrusion. Polymers, 2022, 14, 2316.	4.5	2
137	Testing the PTT Rheological Model for Extrusion of Virgin and Composite Materials in View of Enhanced Conductivity and Mechanical Recycling Potential. Processes, 2021, 9, 1969.	2.8	0
138	Green Degradable (Co)Polyacrylics: A Kinetic Monte Carlo Study. , 2020, 69, .		0
139	A Generic Combined Matrix- and Lattice-Based Kinetic Monte Carlo Modeling Tool to Tune Surface-Initiated Polymerization. , 2020, 69, .		0
140	[4+4] Anthracene Photodimerization for Controlled Folding of Single Chain Polymer Nanoparticles. , 2020, 69, .		0