List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2233316/publications.pdf Version: 2024-02-01

INONA JASULK

#	Article	IF	CITATIONS
1	Experimental trends in polymer nanocomposites—a review. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 393, 1-11.	2.6	1,036
2	Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials and Design, 2017, 122, 255-267.	3.3	268
3	TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone, 2003, 33, 270-282.	1.4	254
4	Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Materials and Design, 2019, 165, 107597.	3.3	246
5	Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mechanics of Materials, 2016, 95, 102-115.	1.7	197
6	Multiscale modeling of elastic properties of cortical bone. Acta Mechanica, 2010, 213, 131-154.	1.1	164
7	Prediction and optimization of mechanical properties of composites using convolutional neural networks. Composite Structures, 2019, 227, 111264.	3.1	118
8	Modelling of bone fracture and strength at different length scales: a review. Interface Focus, 2016, 6, 20150055.	1.5	98
9	An Overview on Additive Manufacturing of Polymers. Jom, 2018, 70, 275-283.	0.9	97
10	Elastic Moduli of Two Dimensional Materials With Polygonal and Elliptical Holes. Applied Mechanics Reviews, 1994, 47, S18-S28.	4.5	96
11	A review of impact resistant biological and bioinspired materials and structures. Journal of Materials Research and Technology, 2020, 9, 15705-15738.	2.6	96
12	The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic composites. Mechanics of Materials, 1993, 15, 53-63.	1.7	94
13	Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. International Journal of Solids and Structures, 2016, 83, 169-182.	1.3	94
14	Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces. Materials and Design, 2018, 145, 20-27.	3.3	89
15	The stress field of a sliding inclusion. International Journal of Solids and Structures, 1985, 21, 1165-1179.	1.3	86
16	Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites. Composite Structures, 2015, 133, 85-97.	3.1	79
17	A micromechanically based couple–stress model of an elastic two-phase composite. International Journal of Solids and Structures, 2001, 38, 1721-1735.	1.3	77
18	Scale-dependent bounds on effective elastoplastic response of random composites. Journal of the Mechanics and Physics of Solids, 2001, 49, 655-673.	2.3	74

#	Article	IF	CITATIONS
19	Apparent thermal conductivity of periodic two-dimensional composites. Computational Materials Science, 2002, 25, 329-338.	1.4	74
20	Quantitative second-harmonic generation microscopy for imaging porcine cortical bone: Comparison to SEM and its potential to investigate age-related changes. Bone, 2012, 50, 643-650.	1.4	74
21	Scale and boundary conditions effects in elastic properties of random composites. Acta Mechanica, 2001, 148, 63-78.	1.1	71
22	Couple-stress moduli and characteristics length of a two-phase composite. Mechanics Research Communications, 1999, 26, 387-396.	1.0	66
23	Multi-scale modelling of elastic moduli of trabecular bone. Journal of the Royal Society Interface, 2012, 9, 1654-1673.	1.5	64
24	Elastic moduli of untreated, demineralized and deproteinized cortical bone: Validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomaterialia, 2012, 8, 1080-1092.	4.1	64
25	Multiscale damage and strength of lamellar bone modeled by cohesive finite elements. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 94-110.	1.5	62
26	The Ultrastructure of Bone and Its Relevance to Mechanical Properties. Frontiers in Physics, 2017, 5, .	1.0	57
27	Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: A review. Theoretical and Applied Mechanics, 2011, 38, 209-297.	0.1	57
28	FTIR Characterization of the Reactive Interface of Cobalt Oxide Nanoparticles Embedded in Polymeric Matrices. Journal of Physical Chemistry B, 2006, 110, 2227-2232.	1.2	56
29	The sliding inclusion under shear. International Journal of Solids and Structures, 1987, 23, 1373-1385.	1.3	55
30	Effective Elastic Constants of Particulate Composites with Inhomogeneous Interphases. Journal of Composite Materials, 1998, 32, 1391-1424.	1.2	55
31	Apparent elastic and elastoplastic behavior of periodic composites. International Journal of Solids and Structures, 2002, 39, 199-212.	1.3	54
32	SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone. Bone, 2004, 35, 11-20.	1.4	53
33	Crack initiation and propagation in materials with randomly distributed holes. Engineering Fracture Mechanics, 1997, 58, 395-420.	2.0	52
34	Micromechanical properties and erosive wear performance of chromium carbide based cermets. Wear, 2009, 267, 152-159.	1.5	52
35	Influence of Random Geometry on Effective Properties and Damage Formation In Composite Materials. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994, 116, 384-391.	0.8	51
36	Engineering with keratin: A functional material and a source of bioinspiration. IScience, 2021, 24, 102798.	1.9	51

#	Article	IF	CITATIONS
37	Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. Journal of Biomechanics, 2006, 39, 2241-2252.	0.9	50
38	A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. European Journal of Mechanics, A/Solids, 2002, 21, 465-481.	2.1	49
39	Elastic moduli of two-dimensional composites with sliding inclusions—A comparison of effective medium theories. International Journal of Solids and Structures, 1993, 30, 2501-2523.	1.3	47
40	The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron, 2005, 36, 653-664.	1.1	46
41	Mechanical properties of porcine femoral cortical bone measured by nanoindentation. Journal of Biomechanics, 2012, 45, 1775-1782.	0.9	46
42	Cavities vis-a-vis rigid inclusions: Elastic moduli of materials with polygonal inclusions. International Journal of Solids and Structures, 1995, 32, 407-422.	1.3	45
43	Induced porosity in Super Alloy 718 through the laser additive manufacturing process: Microstructure and mechanical properties. Journal of Alloys and Compounds, 2017, 725, 757-764.	2.8	43
44	Asymptotic Expansions for the Thermal Stresses in Bonded Semi-Infinite Bimaterial Strips. Journal of Electronic Packaging, Transactions of the ASME, 1991, 113, 173-177.	1.2	42
45	Composites with functionally graded interphases: Mesocontinuum concept and effective transverse conductivity. Acta Materialia, 1996, 44, 2057-2066.	3.8	41
46	Elastic modeling of bone at nanostructural level. Materials Science and Engineering Reports, 2012, 73, 27-49.	14.8	41
47	Elastic moduli of composites with rigid sliding inclusions. Journal of the Mechanics and Physics of Solids, 1992, 40, 373-391.	2.3	40
48	Damage patterns and constitutive response of random matrix-inclusion composites. Engineering Fracture Mechanics, 1997, 58, 581-606.	2.0	40
49	Employing the Biology of Successful Fracture Repair to Heal Critical Size Bone Defects. Current Topics in Microbiology and Immunology, 2012, 367, 113-132.	0.7	39
50	A polyurethaneâ€based nanocomposite biocompatible bone adhesive. Journal of Applied Polymer Science, 2013, 127, 4974-4982.	1.3	39
51	Fracture of random matrix-inclusion composites: scale effects and statistics. International Journal of Solids and Structures, 1998, 35, 2537-2566.	1.3	37
52	Numerical Modeling of Long Bone Adaptation due to Mechanical Loading: Correlation with Experiments. Annals of Biomedical Engineering, 2010, 38, 594-604.	1.3	37
53	Reference point indentation study of age-related changes in porcine femoral cortical bone. Journal of Biomechanics, 2013, 46, 1689-1696.	0.9	37
54	Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation model. Journal of Applied Physics, 2016, 120, .	1.1	36

#	Article	IF	CITATIONS
55	Successive iteration method applied to composites containing sliding inclusions: effective modulus and anelasticity. Mechanics of Materials, 1990, 9, 229-243.	1.7	35
56	Modeling of bone at a single lamella level. Biomechanics and Modeling in Mechanobiology, 2004, 3, 67-74.	1.4	35
57	The Sliding Circular Inclusion in an Elastic Half-Plane. Journal of Applied Mechanics, Transactions ASME, 1992, 59, S57-S64.	1.1	33
58	Planar Cosserat Elasticity of Materials With Holes and Intrusions. Applied Mechanics Reviews, 1995, 48, S11-S18.	4.5	32
59	The effect of ozone and high temperature on polymer degradation inÂpolymer core composite conductors. Polymer Degradation and Stability, 2013, 98, 2282-2290.	2.7	31
60	Multi-scale characterization of swine femoral cortical bone. Journal of Biomechanics, 2011, 44, 313-320.	0.9	30
61	The influence of interface and arrangement of inclusions on local stresses in composite materials. Acta Materialia, 1997, 45, 4131-4143.	3.8	29
62	Modeling of Stiffness and Strength of Bone at Nanoscale. Journal of Biomechanical Engineering, 2017, 139, .	0.6	29
63	Sp2 carbon embedded in Al-6061 and Al-7075 alloys in the form of crystalline graphene nanoribbons. Carbon, 2016, 107, 56-66.	5.4	28
64	The effect of ozone on polymer degradation in Polymer Core Composite Conductors. Polymer Degradation and Stability, 2013, 98, 436-445.	2.7	27
65	Tunneling-percolation behavior of polydisperse prolate and oblate ellipsoids. Journal of Applied Physics, 2015, 118, .	1.1	27
66	Compression and buckling of microarchitectured Neovius-lattice. Extreme Mechanics Letters, 2020, 37, 100688.	2.0	27
67	Experimental and computational study of shielding effectiveness of polycarbonate carbon nanocomposites. Journal of Applied Physics, 2016, 120, .	1.1	26
68	Cortical bone fracture analysis using XFEM – case study. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2809.	1.0	25
69	Modeling of cortical bone adaptation in a rat ulna: Effect of frequency. Bone, 2012, 50, 792-797.	1.4	24
70	Towards a standardized reference point indentation testing procedure. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 57-65.	1.5	23
71	Heat-Induced Polycondensation Reaction with Self-Generated Blowing Agent Forming Aromatic Thermosetting Copolyester Foams. Macromolecules, 2016, 49, 6489-6496.	2.2	23
72	A Spherical Inclusion in an Elastic Half-Space Under Shear. Journal of Applied Mechanics, Transactions ASME, 1997, 64, 471-479.	1.1	22

#	Article	IF	CITATIONS
73	Apparent elastic properties of random fiber networks. Computational Materials Science, 2013, 79, 715-723.	1.4	22
74	Avalanche criticality during compression of porcine cortical bone of different ages. Physical Review E, 2016, 93, 053001.	0.8	22
75	Dissipation energy as a stimulus for cortical bone adaptation. Journal of Mechanics of Materials and Structures, 2011, 6, 303-319.	0.4	21
76	Novel metal-carbon nanomaterials: A review on covetics. Advanced Materials Letters, 2017, 8, 884-890.	0.3	21
77	On Stiffness, Strength, Anisotropy, and Buckling of 30 Strutâ€Based Lattices with Cubic Crystal Structures. Advanced Engineering Materials, 2022, 24, .	1.6	21
78	Scale and Boundary Conditions Effects on the Apparent Elastic Moduli of Trabecular Bone Modeled as a Periodic Cellular Solid. Journal of Biomechanical Engineering, 2009, 131, 121008.	0.6	20
79	Effects of freeze–thaw and micro-computed tomography irradiation on structure–property relations of porcine trabecular bone. Journal of Biomechanics, 2014, 47, 1495-1498.	0.9	20
80	Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials. Polymer, 2017, 123, 311-320.	1.8	18
81	Circular Inclusion in Half-Plane: Effect of Boundary Conditions. Journal of Engineering Mechanics - ASCE, 1998, 124, 293-300.	1.6	17
82	Age-related changes in the 3D hierarchical structure of rat tibia cortical bone characterized by high-resolution micro-CT. Journal of Applied Physiology, 2013, 114, 923-933.	1.2	17
83	Electroconductive composite of zirconia and hybrid graphene/alumina nanofibers. Journal of the European Ceramic Society, 2017, 37, 3713-3719.	2.8	17
84	Reversible Bonding of Aromatic Thermosetting Copolyesters for In‧pace Assembly. Macromolecular Materials and Engineering, 2019, 304, 1800647.	1.7	17
85	Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software. Journal of Robotic Surgery, 2015, 9, 299-310.	1.0	16
86	Deproteinization of Cortical Bone: Effects of Different Treatments. Calcified Tissue International, 2018, 103, 554-566.	1.5	16
87	Interfacial bonding between mineral platelets in bone and its effect on mechanical properties of bone. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104132.	1.5	16
88	Stresses and Fracture at the Chip/Underfill Interface in Flip-Chip Assemblies. Journal of Electronic Packaging, Transactions of the ASME, 2003, 125, 44-52.	1.2	15
89	Nanoindentation testing and modeling of chromium-carbide-based composites. Mechanics of Composite Materials, 2011, 46, 667-678.	0.9	15
90	Comparison of different protocols for demineralization of cortical bone. Scientific Reports, 2021, 11, 7012.	1.6	15

#	Article	IF	CITATIONS
91	Tunneling-percolation model of multicomponent nanocomposites. Journal of Applied Physics, 2018, 123, .	1.1	14
92	Nonlinear micro T based FE modeling of trabecular bone—Sensitivity of apparent response to tissue constitutive law and bone volume fraction. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2941.	1.0	14
93	Effects of environmental aging on physical properties of aromatic thermosetting copolyester matrix neat and nanocomposite foams. Polymer Degradation and Stability, 2018, 147, 49-56.	2.7	14
94	Fracture analysis of multi-osteon cortical bone using XFEM. Computational Mechanics, 2018, 62, 171-184.	2.2	14
95	Shielding effectiveness and bandgaps of interpenetrating phase composites based on the Schwarz Primitive surface. Journal of Applied Physics, 2018, 124, .	1.1	14
96	Multimodal characterization of the bone-implant interface using Raman spectroscopy and nanoindentation. Medical Engineering and Physics, 2020, 84, 60-67.	0.8	13
97	Scale and size effects on the mechanical properties of bioinspired 3D printed two-phase composites. Journal of Materials Research and Technology, 2020, 9, 14944-14960.	2.6	13
98	Thermal Stresses and Thermal Expansion Coefficients of Short Fiber Composites With Sliding Interfaces. Journal of Engineering Materials and Technology, Transactions of the ASME, 1988, 110, 96-100.	0.8	12
99	Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents. Materials Science and Engineering C, 2015, 54, 207-216.	3.8	12
100	Mechanical Properties of Model Twoâ€Phase Composites with Continuous Compared to Discontinuous Phases. Advanced Engineering Materials, 2018, 20, 1800505.	1.6	12
101	Effect of specimen geometry on tensile strength of cortical bone. Journal of Biomedical Materials Research - Part A, 2010, 95A, 580-587.	2.1	11
102	Nanofiller-conjugated percolating conductive network modified polymerization reaction charaction characteristics of aromatic thermosetting copolyester resin. RSC Advances, 2018, 8, 4946-4954.	1.7	11
103	Linear elasticity of planar Delaunay networks. III: Self-consistent approximations. Acta Mechanica, 1995, 110, 57-72.	1.1	10
104	Xenopus Laevis as a Novel Model to Study Long Bone Critical-Size Defect Repair by Growth Factor-Mediated Regeneration. Tissue Engineering - Part A, 2011, 17, 691-701.	1.6	10
105	NANOINDENTATION AND ASH CONTENT STUDY OF AGE DEPENDENT CHANGES IN PORCINE CORTICAL BONE. Journal of Mechanics in Medicine and Biology, 2015, 15, 1550074.	0.3	10
106	Modeling of Osteoprobe indentation on bone. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 365-373.	1.5	10
107	<scp>Topology</scp> optimization for threeâ€dimensional elastoplastic architected materials using a pathâ€dependent adjoint method. International Journal for Numerical Methods in Engineering, 2021, 122, 1889-1910.	1.5	10
108	Fracture testing of polymer materials processed via fused filament fabrication: a survey of materials, methods, and design applications. Progress in Additive Manufacturing, 2021, 6, 765-780.	2.5	10

#	Article	IF	CITATIONS
109	Biomimetic design of implants for long bone critical-sized defects. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 134, 105370.	1.5	10
110	Aromatic thermosetting copolyester foam core and aluminum foam face three-layer sandwich composite for impact energy absorption. Materials Letters, 2017, 196, 288-291.	1.3	9
111	Aromatic thermosetting copolyester bionanocomposites as reconfigurable bone substitute materials: Interfacial interactions between reinforcement particles and polymer network. Scientific Reports, 2018, 8, 14869.	1.6	8
112	Imparting optical functionality to aromatic thermosetting copolyester by luminescent silicon nanoparticles cross-linked via in situ thermal polymerization reaction. European Polymer Journal, 2018, 103, 351-361.	2.6	8
113	High-Performance Computing Comparison of Implicit and Explicit Nonlinear Finite Element Simulations of Trabecular Bone. Computer Methods and Programs in Biomedicine, 2021, 200, 105870.	2.6	8
114	Spheroidal Sliding Inclusion in an Elastic Half-Space. Applied Mechanics Reviews, 1991, 44, S143-S149.	4.5	7
115	Scale and boundary conditions effects in elasticity and damage mechanics of random composites. Studies in Applied Mechanics, 1998, 46, 65-80.	0.4	7
116	From Lattices and Composites to Micropolar Continua. ICASE/LaRC Interdisciplinary Series in Science and Engineering, 2004, , 175-212.	0.1	7
117	Modeling orthotropic elasticity, localized plasticity and fracture in trabecular bone. Computational Mechanics, 2016, 58, 423-439.	2.2	7
118	Periodic Functionalization of Grapheneâ€Layered Alumina Nanofibers with Aromatic Thermosetting Copolyester via Epitaxial Stepâ€Growth Polymerization. Macromolecular Chemistry and Physics, 2017, 218, 1700338.	1.1	7
119	Finite element simulation of Reference Point Indentation on bone. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 574-583.	1.5	7
120	Effective Elastic Moduli of Composite Materials: Reduced Parameter Dependence. Applied Mechanics Reviews, 1997, 50, S39-S43.	4.5	6
121	The elastic stress field in a half-space containing a prolate spheroidal inhomogeneity subject to pure shear eigenstrain. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 285, 339-345.	2.6	6
122	Elastic behavior of silica/poly(dimethylsiloxane) nanocomposites: nano-size effects. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012008.	0.3	6
123	Proximal Cadaveric Femur Preparation for Fracture Strength Testing and Quantitative CT-based Finite Element Analysis. Journal of Visualized Experiments, 2017, , .	0.2	6
124	Understanding the influence of carbon addition on the corrosion behavior and mechanical properties of Al alloy "covetics― Journal of Materials Science, 2019, 54, 2668-2679.	1.7	6
125	Merging versatile polymer chemistry with multifunctional nanoparticles: an overview of crosslinkable aromatic polyester matrix nanocomposites. Soft Matter, 2020, 16, 1389-1403.	1.2	6
126	Modeling of bending and torsional stiffnesses of bone at sub-microscale: Effect of curved mineral lamellae. Journal of Biomechanics, 2021, 123, 110531.	0.9	6

#	Article	IF	CITATIONS
127	On multiple connectivity and reduction of constants for composites with body forces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454, 1357-1369.	1.0	5
128	ON THE REDUCTION OF CONSTANTS IN PLANAR COSSERAT ELASTICITY WITH EIGENSTRAINS AND EIGENCURVATURES. Journal of Thermal Stresses, 2003, 26, 1221-1228.	1.1	5
129	Class transition broadening <i>via</i> nanofillerâ€contiguous polymer network in aromatic thermosetting copolyester nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1595-1603.	2.4	5
130	Identification and Mapping of Manufacturability Constraints for Extrusion-Based Additive Manufacturing. Journal of Manufacturing and Materials Processing, 2021, 5, 33.	1.0	5
131	The effect of shot particles on the fatigue of Kaowool fiber-reinforced 339 aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 195-201.	1.1	4
132	Title is missing!. Journal of Materials Science, 2001, 36, 1201-1212.	1.7	4
133	Interfacial Stress Analysis and Fracture of a Bi-Material Strip With a Heterogeneous Underfill. Journal of Electronic Packaging, Transactions of the ASME, 2003, 125, 400-413.	1.2	4
134	Characterisation of microstructure and mechanical properties of cermets at micro- and nanoscales. International Journal of Materials and Product Technology, 2011, 40, 58.	0.1	4
135	Bone Resorption Markers and Dualâ€Energy <scp>X</scp> â€Ray Absorptiometry in Dogs with Avascular Necrosis, Degenerative Joint Disease, and Trauma of the Coxofemoral Joint. Veterinary Surgery, 2012, 41, 551-558.	0.5	4
136	Design and repeatability analysis of desktop tool for rapid pre-cracking of notched ductile plastic fracture specimens. Engineering Fracture Mechanics, 2019, 217, 106536.	2.0	4
137	Wide Area Reversible Adhesive for In pace Assembly. Macromolecular Materials and Engineering, 2020, 305, 2000006.	1.7	4
138	Micromechanics of Bone Modeled as a Composite Material. , 2018, , 281-306.		4
139	Modeling of trabecular bone as a hierarchical material. , 2003, , 1727-1728.		4
140	Modeling of Trabecular Bone as a Couple Stress Continuum. , 2003, , .		4
141	Defect Chemistry of Titanium Dioxide: Evidence of the n-p Transition during Cooling. Journal of Physical Chemistry C, 2022, 126, 5014-5021.	1.5	4
142	Method and Instrumented Fixture for Femoral Fracture Testing in a Sideways Fall-on-the-Hip Position. Journal of Visualized Experiments, 2017, , .	0.2	3
143	Optimization of Structures Made From Composites With Elliptical Inclusions. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	3
144	Interfacial liquid crystalline mesophase domain on carbon nanofillers in aromatic thermosetting copolyester matrix. Journal of Applied Polymer Science, 2018, 135, 46584.	1.3	3

#	Article	IF	CITATIONS
145	Manufacturing process-driven structured materials (MPDSMs): design and fabrication for extrusion-based additive manufacturing. Rapid Prototyping Journal, 2021, ahead-of-print, .	1.6	3
146	On the reduced parameter dependence of the Mori–Tanaka theory. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 285, 130-135.	2.6	2
147	Molecular Dynamics Computations of Flow in Constricted and Wavy Nano Channels. , 2009, , .		2
148	Stress invariance and exact relations in the mechanics of composite materials: Extensions of the CLM result – A review. Mechanics of Materials, 2009, 41, 394-404.	1.7	2
149	Dielectric behavior of Silica/Poly(dimethylsiloxane) nanocomposites. nano size effects. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012011.	0.3	2
150	A Method to Estimate Cadaveric Femur Cortical Strains During Fracture Testing Using Digital Image Correlation. Journal of Visualized Experiments, 2017, , .	0.2	2
151	Deproteinized young bone reveals a continuous mineral phase and its contribution to mechanical properties with age. Journal of Materials Research and Technology, 2020, 9, 15421-15432.	2.6	2
152	Reversible bonding via exchange reactions following atomic oxygen and proton exposure. Journal of Adhesion Science and Technology, 2021, 35, 2124-2141.	1.4	2
153	Thermal Stresses and Thermal Expansion Coefficients of Composites Reinforced with Coated Spherical Particles. , 1990, , 539-548.		2
154	Multiscale Characterization of the Ultrastructure of Normal and Osteoporotic Human Trabecular Bone. , 2002, , .		2
155	The Hemispherical Inhomogeneity Subjected to a Concentrated Force. , 1990, , 497-509.		2
156	Apparent elastic moduli of trabecular bone. Journal of Biomechanics, 2006, 39, S468.	0.9	1
157	Multiscale Modeling of Cortical Bone. , 2010, , .		1
158	Hierarchical Structure of Porosity in Cortical and Trabecular Bones. Materials Research Society Symposia Proceedings, 2012, 1420, 24.	0.1	1
159	Graphenated ceramic nanofibers for highly sensitive simultaneous detection of dopamine, uric acid and ascorbic acid. Advanced Materials Letters, 2017, 8, 1178-1183.	0.3	1
160	Micromechanics-based interfacial stress analysis and fracture in electronic packaging assemblies with heterogeneous underfill. , 0, , .		0
161	Fatigue of Kaowool reinforced aluminum: Effect of shot particle wall thickness. Journal of Materials Science, 2003, 38, 2851-2860.	1.7	0
162	Technical Note on the Preparation of Un-decalcified Trabecular Bone for Examination by TEM. Microscopy Today, 2004, 12, 44-44.	0.2	0

#	Article	IF	CITATIONS
163	Concentrated force acting on a power law creep half-plane. Journal of Mechanics of Materials and Structures, 2008, 3, 697-705.	0.4	0
164	Age-Related Changes in Structure, Composition and Mechanical Properties of Swine Cortical Bone. , 2009, , .		0
165	Finite Element Simulation and X-Ray Microdiffraction Study of Strain Partitioning in a Layered Nanocomposite. Journal of Crystallography, 2016, 2016, 1-11.	0.0	0
166	Tunneling—Percolation Behavior of Graphene-Encapsulated Whiskers as Electroconductive Fillers for Ceramics. Advanced Structured Materials, 2019, , 131-139.	0.3	0
167	Correlation of Multi-scale Modeling and Experimental Results for the Elastic Modulus of Trabecular Bone. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 59-65.	0.3	0