Giuseppe Bardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2232725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moving Forward in Nano-Immune Interactions. Nanomaterials, 2022, 12, 2033.	1.9	0
2	Adverse outcome pathway in immunotoxicity of perfluoroalkyls. Current Opinion in Toxicology, 2021, 25, 23-29.	2.6	13
3	Immune Responses to Nanomaterials for Biomedical Applications. Nanomaterials, 2021, 11, 1241.	1.9	0
4	Nano-carriers of COVID-19 vaccines: the main pillars of efficacy. Nanomedicine, 2021, 16, 2377-2387.	1.7	8
5	CXCL5 Modified Nanoparticle Surface Improves CXCR2+ Cell Selective Internalization. Cells, 2020, 9, 56.	1.8	6
6	CXCL12-PLGA/Pluronic Nanoparticle Internalization Abrogates CXCR4-Mediated Cell Migration. Nanomaterials, 2020, 10, 2304.	1.9	12
7	Nanometric Virus-Like Particles: Key Tools for Vaccine and Adjuvant Technology. Vaccines, 2020, 8, 430.	2.1	2
8	Potential Applications of Nanomaterials to Quench the Cytokine Storm in Coronavirus Disease 19. Frontiers in Bioengineering and Biotechnology, 2020, 8, 906.	2.0	10
9	Protein Adsorption: A Feasible Method for Nanoparticle Functionalization?. Materials, 2019, 12, 1991.	1.3	63
10	Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties. International Journal of Molecular Sciences, 2019, 20, 5092.	1.8	175
11	Monitoring cell substrate interactions in exopolysaccharide-based films reinforced with chitin whiskers and starch nanoparticles used as cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 333-339.	1.8	10
12	Metallic Nanoparticles: General Research Approaches to Immunological Characterization. Nanomaterials, 2018, 8, 753.	1.9	18
13	Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano, 2018, 12, 7690-7700.	7.3	208
14	Graphene Biotransformation: Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion (Small 24/2018). Small, 2018, 14, 1870113.	5.2	2
15	Platinum Nanoparticles Decrease Reactive Oxygen Species and Modulate Gene Expression without Alteration of Immune Responses in THP-1 Monocytes. Nanomaterials, 2018, 8, 392.	1.9	31
16	Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. Small, 2018, 14, e1800227.	5.2	42
17	Platinum nanoparticles in nanobiomedicine. Chemical Society Reviews, 2017, 46, 4951-4975.	18.7	314
18	PMA-Induced THP-1 Macrophage Differentiation is Not Impaired by Citrate-Coated Platinum Nanoparticles. Nanomaterials, 2017, 7, 332.	1.9	34

GIUSEPPE BARDI

#	Article	IF	CITATIONS
19	Human monocyte response to Andean-native starch nanoparticles. Starch/Staerke, 2016, 68, 1016-1023.	1.1	11
20	Chitin whiskers reinforced carrageenan films as low adhesion cell substrates. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 574-580.	1.8	16
21	A poly(ether-ester) copolymer for the preparation of nanocarriers with improved degradation and drug delivery kinetics. Materials Science and Engineering C, 2016, 59, 488-499.	3.8	7
22	Design and optimization of lipid-modified poly(amidoamine) dendrimer coated iron oxide nanoparticles as probes for biomedical applications. Nanoscale, 2015, 7, 7307-7317.	2.8	10
23	Immunological properties of Andean starch films are independent of their nanometric roughness and stiffness. International Journal of Biological Macromolecules, 2015, 75, 460-466.	3.6	13
24	Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ ion release in the cytosol. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 731-739.	1.7	220
25	Lipid-modified dendrimers as a tool for the design of nanoparticle-based multimodal MRI contrast agents. , 2014, , .		0
26	Cross-Desensitization of CCR1, but Not CCR2, following Activation of the Formyl Peptide Receptor FPR1. Journal of Immunology, 2014, 192, 5305-5313.	0.4	17
27	Surface functionalisation regulates polyamidoamine dendrimer toxicity on blood–brain barrier cells and the modulation of key inflammatory receptors on microglia. Nanotoxicology, 2014, 8, 158-168.	1.6	34
28	Novel siRNA delivery strategy: a new "strand―in CNS translational medicine?. Cellular and Molecular Life Sciences, 2014, 71, 1-20.	2.4	24
29	Biomedical Nanoparticles: Overview of Their Surface Immune-Compatibility. Coatings, 2014, 4, 139-159.	1.2	101
30	Detection of Fluorescent Nanoparticle Interactions with Primary Immune Cell Subpopulations by Flow Cytometry. Journal of Visualized Experiments, 2014, , .	0.2	7
31	Cerium dioxide nanoparticles selectively up-regulate C-C chemokine receptor 2 and CD16 expression on human monocytes. EURO-NanoTox-Letters, 2014, 5, 1-16.	1.0	2
32	In Vivo Distribution and Toxicity of PAMAM Dendrimers in the Central Nervous System Depend on Their Surface Chemistry. Molecular Pharmaceutics, 2013, 10, 249-260.	2.3	154
33	Selective Targeting Capability Acquired with a Protein Corona Adsorbed on the Surface of 1,2-Dioleoyl-3-trimethylammonium Propane/DNA Nanoparticles. ACS Applied Materials & Interfaces, 2013, 5, 13171-13179.	4.0	150
34	Functionalized Carbon Nanotubes in the Brain: Cellular Internalization and Neuroinflammatory Responses. PLoS ONE, 2013, 8, e80964.	1.1	89
35	A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. Journal of Controlled Release, 2012, 163, 293-303.	4.8	119
36	Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores. Biomacromolecules, 2012, 13, 4089-4097.	2.6	54

GIUSEPPE BARDI

#	Article	IF	CITATIONS
37	Polymeric nanocarriers for controlled and enhanced delivery of therapeutic agents to the CNS. Therapeutic Delivery, 2012, 3, 875-887.	1.2	28
38	Neurological System. , 2012, , 157-168.		0
39	Multiwalled Carbon Nanotube Antennas Induce Effective Plasmid DNA Transfection of Bacterial Cells. Journal of Nanoneuroscience, 2012, 2, 56-62.	0.5	5
40	Safety of Carbon Nanotubes for Neuronal Tissue. , 2012, , 3-16.		2
41	Carbon nanotube-mediated wireless cell permeabilization: drug and gene uptake. Nanomedicine, 2011, 6, 1709-1718.	1.7	31
42	SiO2 NPs: Promising Candidates for Drug and Gene Delivery. Drug Delivery Letters, 2011, 1, 9-12.	0.2	1
43	Protein Kinase Cζ Mediates μ-Opioid Receptor-induced Cross-desensitization of Chemokine Receptor CCR5. Journal of Biological Chemistry, 2011, 286, 20354-20365.	1.6	31
44	Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10952-10957.	3.3	217
45	SiO2 NPs: Promising Candidates for Drug and Gene Delivery. Drug Delivery Letters, 2011, 1, 9-12.	0.2	3
46	In Vitro and In Vivo Biocompatibility Testing of Functionalized Carbon Nanotubes. Methods in Molecular Biology, 2010, 625, 67-83.	0.4	19
47	The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials, 2010, 31, 6555-6566.	5.7	73
48	The obesity and inflammatory marker haptoglobin attracts monocytes via interaction with chemokine (C-C motif) receptor 2 (CCR2). BMC Biology, 2009, 7, 87.	1.7	45
49	Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons in vivo and in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 96-104.	1.7	91
50	Adipocytes differentiation in the presence of Pluronic F127–coated carbon nanotubes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 378-381.	1.7	11
51	Bi-directional heterologous desensitization between the major HIV-1 co-receptor CXCR4 and the \hat{I}^{e} -opioid receptor. Journal of Neuroimmunology, 2008, 197, 114-123.	1.1	60
52	Modulation of neuronal CXCR4 by the μ-opioid agonist DAMGO. Journal of NeuroVirology, 2006, 12, 492-500.	1.0	61
53	Human immunodeficiency virus gp120-induced apoptosis of human neuroblastoma cells in the absence of CXCR4 internalization. Journal of NeuroVirology, 2006, 12, 211-218.	1.0	39
54	Vav-Dependent and Vav-Independent Phosphatidylinositol 3-Kinase Activation in Murine B Cells Determined by the Nature of the Stimulus. Journal of Immunology, 2004, 173, 3209-3214.	0.4	46

GIUSEPPE BARDI

#	Article	IF	CITATIONS
55	Rho kinase is required for CCR7-mediated polarization and chemotaxis of T lymphocytes. FEBS Letters, 2003, 542, 79-83.	1.3	70
56	A Crucial Role for the p110δ Subunit of Phosphatidylinositol 3-Kinase in B Cell Development and Activation. Journal of Experimental Medicine, 2002, 196, 753-763.	4.2	417
57	Ornithine Decarboxylase Activity During Development of Cerebellar Granule Neurons. Journal of Neurochemistry, 2002, 71, 1898-1904.	2.1	13
58	Eotaxin is a natural antagonist for CCR2 and an agonist for CCR5. Blood, 2001, 97, 1920-1924.	0.6	160
59	The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. European Journal of Immunology, 2001, 31, 3291-3297.	1.6	118
60	The Ligands of CXC Chemokine Receptor 3, I-TAC, Mig, and IP10, Are Natural Antagonists for CCR3. Journal of Biological Chemistry, 2001, 276, 2986-2991.	1.6	276
61	Immunology of biodegradable nanoparticles: a brief overview on a wide growing field. , 0, , 48-60.		5