Hongjie Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2232508/publications.pdf

Version: 2024-02-01

218381 197535 2,527 60 26 49 h-index citations g-index papers 60 60 60 3360 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. Journal of Materials Chemistry, 2011, 21, 5972.	6.7	290
2	SiO2/graphene composite for highly selective adsorption of Pb(II) ion. Journal of Colloid and Interface Science, 2012, 369, 381-387.	5.0	231
3	Turn-on Persistent Luminescence Probe Based on Graphitic Carbon Nitride for Imaging Detection of Biothiols in Biological Fluids. Analytical Chemistry, 2013, 85, 11876-11884.	3.2	197
4	Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Analytical Methods, 2012, 4, 3261.	1.3	194
5	Metal–organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sensors and Actuators B: Chemical, 2014, 197, 50-57.	4.0	98
6	A cataluminescence gas sensor for triethylamine based on nanosized LaF3–CeO2. Sensors and Actuators B: Chemical, 2012, 169, 261-266.	4.0	93
7	Fabrication of \hat{l} ±-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sensors and Actuators B: Chemical, 2015, 211, 370-376.	4.0	89
8	A metal (Co)–organic framework-based chemiluminescence system for selective detection of <scp>I</scp> -cysteine. Analyst, The, 2015, 140, 2656-2663.	1.7	79
9	Recent advances in chemiluminescence for reactive oxygen species sensing and imaging analysis. Microchemical Journal, 2019, 146, 83-97.	2.3	64
10	Quantum dotsâ€based chemiluminescence probes: an overview. Luminescence, 2019, 34, 530-543.	1.5	62
11	Strategies in liquid-phase chemiluminescence and their applications in bioassay. TrAC - Trends in Analytical Chemistry, 2016, 82, 394-411.	5 . 8	58
12	Chemiluminescence of Oleic Acid Capped Black Phosphorus Quantum Dots for Highly Selective Detection of Sulfite in PM _{2.5}	3.2	58
13	Advances in nanomaterial-assisted cataluminescence and its sensing applications. TrAC - Trends in Analytical Chemistry, 2015, 67, 107-127.	5.8	53
14	Novel metal-organic frameworks-based hydrogen sulfide cataluminescence sensors. Sensors and Actuators B: Chemical, 2015, 220, 614-621.	4.0	53
15	A Y-doped metal-organic framework-based cataluminescence gas sensor for isobutanol. Sensors and Actuators B: Chemical, 2014, 201, 413-419.	4.0	43
16	Stable and Waterâ€Dispersible Graphene Nanosheets: Sustainable Preparation, Functionalization, and Highâ€Performance Adsorbents for Pb ²⁺ . ChemPlusChem, 2012, 77, 379-386.	1.3	42
17	Highly sensitive cataluminescence gas sensors for 2-butanone based on g-C3N4 sheets decorated with CuO nanoparticles. Analytical and Bioanalytical Chemistry, 2016, 408, 8831-8841.	1.9	38
18	The morphological evolution of hydroxyapatite on high-efficiency Pb2+ removal and antibacterial activity. Microchemical Journal, 2017, 135, 16-25.	2.3	36

#	Article	IF	CITATIONS
19	Hierarchical hollow microsphere and flower-like indium oxide: Controllable synthesis and application as H2S cataluminescence sensing materials. Materials Research Bulletin, 2012, 47, 2212-2218.	2.7	35
20	Cataluminescence Coupled with Photoassisted Technology: A Highly Efficient Metal-Free Gas Sensor for Carbon Monoxide. Analytical Chemistry, 2019, 91, 13158-13164.	3.2	35
21	UV-Assisted Cataluminescent Sensor for Carbon Monoxide Based on Oxygen-Functionalized g-C ₃ N ₄ Nanomaterials. Analytical Chemistry, 2018, 90, 9598-9605.	3.2	31
22	Ratiometric Cataluminescence for Rapid Recognition of Volatile Organic Compounds Based on Energy Transfer Process. Analytical Chemistry, 2019, 91, 4860-4867.	3.2	31
23	Enhanced peroxidase-like activity of Mo-doped ceria nanoparticles for sensitive colorimetric detection of glucose. Analytical Methods, 2018, 10, 76-83.	1.3	30
24	Engineering Ratiometric Persistent Luminous Sensor Arrays for Biothiols Identification. Analytical Chemistry, 2020, 92, 6645-6653.	3.2	30
25	Metal-Tagged CRISPR/Cas12a Bioassay Enables Ultrasensitive and Highly Selective Evaluation of Kanamycin Bioaccumulation in Fish Samples. Analytical Chemistry, 2021, 93, 14214-14222.	3.2	30
26	Hierarchical SnO2 architectures: controllable growth on graphene by atmospheric pressure chemical vapour deposition and application in cataluminescence gas sensor. CrystEngComm, 2014, 16, 3331.	1.3	27
27	A cubic luminescent graphene oxide functionalized Zn-based metal-organic framework composite for fast and highly selective detection of Cu2+ions in aqueous solution. Analyst, The, 2014, 139, 764-770.	1.7	26
28	Ratiometric Cataluminescence Sensor of Amine Vapors for Discriminating Meat Spoilage. Analytical Chemistry, 2021, 93, 6692-6697.	3.2	26
29	Efficient generation of sulfate radicals in Fe(<scp>ii</scp>)/S(<scp>iv</scp>) system induced by WS ₂ nanosheets and examined by its intrinsic chemiluminescence. Chemical Communications, 2020, 56, 6993-6996.	2.2	26
30	A highly selective and fast-response photoluminescence humidity sensor based on F ^{â^'} decorated NH ₂ -MIL-53(Al) nanorods. Journal of Materials Chemistry C, 2017, 5, 9465-9471.	2.7	25
31	Controllable deposition of ZnO-doped SnO2 nanowires on Au/graphene and their application in cataluminescence sensing for alcohols and ketones. Sensors and Actuators B: Chemical, 2014, 203, 726-735.	4.0	24
32	K ⁺ Ion-Doped Mixed Carbon Nitride: A Daylight-Driven Photocatalyst and Luminophore for Enhanced Chemiluminescence. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5478-5486.	4.0	23
33	Triazine-based graphitic carbon nitride: controllable synthesis and enhanced cataluminescent sensing for formic acid. Analytical and Bioanalytical Chemistry, 2018, 410, 7499-7509.	1.9	21
34	Multifunctional Reduced Graphene Oxide-Based Nanoplatform for Synergistic Targeted Chemo-Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 5213-5222.	2.3	20
35	Enhanced cataluminescence sensing characteristics of ethanol on hierarchical spheres ZnO. Sensors and Actuators B: Chemical, 2012, 173, 93-99.	4.0	19
36	Accelerated reducing synthesis of Ag@CDs composite and simultaneous determination of glucose during the synthetic process. RSC Advances, 2014, 4, 3992-3997.	1.7	19

#	Article	IF	CITATIONS
37	Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence, Cataluminescence and Electrochemiluminescence. Journal of Analysis and Testing, 2017, 1, 274-290.	2.5	18
38	Porous boron nitride: A novel metal-free cataluminescence material for high performance H2S sensing. Sensors and Actuators B: Chemical, 2021, 332, 129512.	4.0	18
39	New advanced oxidation progress with chemiluminescence behavior based on NaClO triggered by WS2 nanosheets. Journal of Hazardous Materials, 2022, 429, 128329.	6.5	18
40	Cataluminescence gas sensor for ketones based on nanosized NaYF4:Er. Sensors and Actuators B: Chemical, 2016, 222, 300-306.	4.0	17
41	Hierarchical spheres In 2 S 3 -based cataluminescence sensor for ammonium sulfide. Microchemical Journal, 2018, 138, 116-121.	2.3	16
42	Ratiometric two-photon fluorescent probe for detection of hypochlorite in living cells. Talanta, 2020, 217, 121099.	2.9	15
43	Photocatalysis enhanced cataluminescence gas sensor for carbon monoxide based on perylenetetracarboxylic diimide. Sensors and Actuators B: Chemical, 2020, 315, 128080.	4.0	15
44	Fabrication of fluorescent nitrogen-rich graphene quantum dots by tin(<scp>iv</scp>) catalytic carbonization of ethanolamine. RSC Advances, 2015, 5, 60085-60089.	1.7	14
45	Multiplex DNA Walking Machines for Lung Cancer-Associated miRNAs. Analytical Chemistry, 2022, 94, 1787-1794.	3.2	13
46	Recent advances in black phosphorus-based optical sensors. Applied Spectroscopy Reviews, 2019, 54, 275-284.	3.4	12
47	Transient Chemiluminescence Assay for Real-Time Monitoring of the Processes of SO ₃ ^{2–} -Based Advanced Oxidation Reactions. Environmental Science & Technology, 2022, 56, 3170-3180.	4.6	12
48	Ozone-inducted ratiometric cataluminescence for aromatic compounds discrimination based on Eu,Tb co-doped MgO. Sensors and Actuators B: Chemical, 2021, 327, 128939.	4.0	11
49	Cataluminescence sensing of carbon disulfide based on CeO2 hierarchical hollow microspheres. Analytical and Bioanalytical Chemistry, 2018, 410, 5113-5122.	1.9	10
50	Synergistic chemiluminescence nanoprobe: Au clusters-Cu ²⁺ -induced chemiexcitation of cyclic peroxides and resonance energy transfer. Chemical Communications, 2020, 56, 3151-3154.	2.2	10
51	A novel Ce(IV)-MOF-based cataluminescence sensor for detection of hydrogen sulfide. Sensors and Actuators B: Chemical, 2022, 362, 131746.	4.0	10
52	Efficient Photoinduced Thermocatalytic Chemiluminescence System Based on the Z-Scheme Heterojunction Ag ₃ PO ₄ /Ag/Bi ₄ Ti ₃ O ₁₂ for H ₂ S Sensing. Analytical Chemistry, 2022, 94, 9415-9423.	3.2	10
53	ZnO Nanoparticle-Decorated CeO ₂ Nanospheres for Cataluminescence Sensing of H ₂ S. ACS Applied Nano Materials, 2021, 4, 9557-9565.	2.4	9
54	Lanthanide Nanoprobes for the Multiplex Evaluation of Breast Cancer Biomarkers. Analytical Chemistry, 2021, 93, 13719-13726.	3.2	9

#	Article	IF	CITATIONS
55	Co3O4 modified polymeric carbon nitride for external light-free chlorine activating degradation of organic pollutants. Journal of Hazardous Materials, 2022, 429, 128193.	6.5	9
56	Flower-like Gold Nanoparticles for In Situ Tailoring Luminescent Molecules for Synergistic Enhanced Chemiluminescence. Analytical Chemistry, 2022, 94, 8947-8957.	3.2	9
57	Evaluating the Band Gaps of Semiconductors by Cataluminescence. Analytical Chemistry, 2021, 93, 14454-14461.	3.2	6
58	A novel method to synthesize luminescent silicon carbide nanoparticles based on dielectric barrier discharge plasma. Journal of Materials Chemistry C, 2020, 8, 16949-16956.	2.7	5
59	Ozone-Activated Cataluminescence Sensor System for Dichloroalkanes Based on Silica Nanospheres. ACS Sensors, 2021, 6, 2893-2901.	4.0	4
60	Modified triazine-based carbon nitride as a high efficiency fluorescence sensor for the label-free detection of Ag+. Journal of Materials Research, 2020, 35, 3235-3246.	1.2	1