
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2231618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The electrical conductivity of solution-processed nanosheet networks. Nature Reviews Materials, 2022, 7, 217-234.	23.3	75
2	Additive Manufacturing of Ti ₃ C ₂ â€MXeneâ€Functionalized Conductive Polymer Hydrogels for Electromagneticâ€Interference Shielding. Advanced Materials, 2022, 34, e2106253.	11.1	115
3	Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage. Npj 2D Materials and Applications, 2022, 6, .	3.9	15
4	Quantifying the Piezoresistive Mechanism in High-Performance Printed Graphene Strain Sensors. ACS Applied Materials & Interfaces, 2022, 14, 7141-7151.	4.0	14
5	Highly Conductive Networks of Silver Nanosheets. Small, 2022, 18, e2105996.	5.2	16
6	Quantifying the Effect of Separator Thickness on Rate Performance in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 030503.	1.3	17
7	Liquid phase exfoliation of nonlayered non-van der Waals iron trifluoride (FeF3) into 2D-platelets for high-capacity lithium storing cathodes. FlatChem, 2022, 33, 100360.	2.8	15
8	Liquidâ€Phase Exfoliation of Nonlayered Nonâ€Vanâ€Derâ€Waals Crystals into Nanoplatelets. Advanced Materials, 2022, 34, e2202164.	11.1	40
9	On the relationship between morphology and conductivity in nanosheet networks. Carbon, 2021, 171, 306-319.	5.4	22
10	Label-free screening of biochemical changes in macrophage-like cells following MoS2 exposure using Raman micro-spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118916.	2.0	4
11	Liquid Exfoliated SnP ₃ Nanosheets for Very High Areal Capacity Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2002364.	10.2	40
12	Tuning the Photoâ€electrochemical Performance of Ru II â€5ensitized Twoâ€Đimensional MoS 2. Chemistry - A European Journal, 2021, 27, 984-992.	1.7	3
13	Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nature Nanotechnology, 2021, 16, 592-598.	15.6	74
14	A Simple Model Relating Gauge Factor to Filler Loading in Nanocomposite Strain Sensors. ACS Applied Nano Materials, 2021, 4, 2876-2886.	2.4	28
15	Printable Gâ€Putty for Frequency―and Rateâ€Independent, Highâ€Performance Strain Sensors. Small, 2021, 17, e2006542.	5.2	16
16	2D nanosheets from fool's gold by LPE: High performance lithium-ion battery anodes made from stone. FlatChem, 2021, 30, 100295.	2.8	6
17	Highly Sensitive Composite Foam Bodily Sensors Based on the g-Putty Ink Soaking Procedure. ACS Applied Materials & Interfaces, 2021, 13, 60489-60497.	4.0	7
18	Developing models to fit capacity–rate data in battery systems. Current Opinion in Electrochemistry, 2020, 21, 1-6.	2.5	10

#	Article	IF	CITATIONS
19	Electronic Polarizability as the Fundamental Variable in the Dielectric Properties of Two-Dimensional Materials. Nano Letters, 2020, 20, 841-851.	4.5	70
20	High Performance Na-O ₂ Batteries and Printed Microsupercapacitors Based on Water-Processable, Biomolecule-Assisted Anodic Graphene. ACS Applied Materials & Interfaces, 2020, 12, 494-506.	4.0	32
21	<i>In vitro</i> localisation and degradation of few-layer MoS ₂ submicrometric plates in human macrophage-like cells: a label free Raman micro-spectroscopic study. 2D Materials, 2020, 7, 025003.	2.0	13
22	All-Printed Dielectric Capacitors from High-Permittivity, Liquid-Exfoliated BiOCl Nanosheets. ACS Applied Electronic Materials, 2020, 2, 3233-3241.	2.0	23
23	Quantifying the Dependence of Battery Rate Performance on Electrode Thickness. ACS Applied Energy Materials, 2020, 3, 10154-10163.	2.5	16
24	Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. ACS Applied Energy Materials, 2020, 3, 2966-2974.	2.5	75
25	Low cost, high performance ultrafiltration membranes from glass fiber-PTFE–graphene composites. Scientific Reports, 2020, 10, 21123.	1.6	8
26	Production of Quasi-2D Platelets of Nonlayered Iron Pyrite (FeS ₂) by Liquid-Phase Exfoliation for High Performance Battery Electrodes. ACS Nano, 2020, 14, 13418-13432.	7.3	45
27	Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. Advanced Functional Materials, 2020, 30, 2002473.	7.8	48
28	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy and Environmental Science, 2020, 13, 2124-2133.	15.6	35
29	Pristine graphene induces innate immune training. Nanoscale, 2020, 12, 11192-11200.	2.8	28
30	Using chronoamperometry to rapidly measure and quantitatively analyse rate-performance in battery electrodes. Journal of Power Sources, 2020, 468, 228220.	4.0	16
31	Effect of Surfactant Choice and Concentration on the Dimensions and Yield of Liquid-Phase-Exfoliated Nanosheets. Chemistry of Materials, 2020, 32, 2852-2862.	3.2	47
32	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10985.	7.3	157
33	Effect of the Gate Volume on the Performance of Printed Nanosheet Network-Based Transistors. ACS Applied Electronic Materials, 2020, 2, 2164-2170.	2.0	6
34	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
35	The Rate Performance of Two-Dimensional Material-Based Battery Electrodes May Not Be as Good as Commonly Believed. ACS Nano, 2020, 14, 3129-3140.	7.3	58
36	Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. National Science Review, 2020, 7, 1360-1366.	4.6	40

#	Article	IF	CITATIONS
37	Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications. 2D Materials, 2020, 7, 035015.	2.0	25
38	Ferroelectric Behavior in Exfoliated 2D Aurivillius Oxide Flakes of Subâ€Unit Cell Thickness. Advanced Electronic Materials, 2020, 6, 1901264.	2.6	18
39	High Charge and Discharge Rate Limitations in Ordered Macroporous Li-ion Battery Materials. Journal of the Electrochemical Society, 2020, 167, 140532.	1.3	3
40	Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey. 2D Materials, 2019, 6, 045036.	2.0	27
41	Selfâ€Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. Advanced Functional Materials, 2019, 29, 1903120.	7.8	9
42	Quantifying the Tradeâ€Off between Absolute Capacity and Rate Performance in Battery Electrodes. Advanced Energy Materials, 2019, 9, 1901359.	10.2	43
43	Liquid phase exfoliation of carbonate-intercalated layered double hydroxides. Chemical Communications, 2019, 55, 3315-3318.	2.2	45
44	Percolation Effects in Electrolytically Gated WS ₂ /Graphene Nano:Nano Composites. ACS Applied Materials & Interfaces, 2019, 11, 8545-8555.	4.0	18
45	High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4, 560-567.	19.8	281
46	Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS ₂ Nanosheets. ACS Nano, 2019, 13, 6845-6855.	7.3	52
47	Equipartition of Energy Defines the Size–Thickness Relationship in Liquid-Exfoliated Nanosheets. ACS Nano, 2019, 13, 7050-7061.	7.3	123
48	Quantifying the factors limiting rateÂperformance in battery electrodes. Nature Communications, 2019, 10, 1933.	5.8	185
49	Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications, 2019, 10, 1795.	5.8	649
50	Solvent exfoliation stabilizes TiS ₂ nanosheets against oxidation, facilitating lithium storage applications. Nanoscale, 2019, 11, 6206-6216.	2.8	44
51	Liquid phase exfoliation of MoO ₂ nanosheets for lithium ion battery applications. Nanoscale Advances, 2019, 1, 1560-1570.	2.2	35
52	High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 2019, 10, 849.	5.8	253
53	Length- and Thickness-Dependent Optical Response of Liquid-Exfoliated Transition Metal Dichalcogenides. Chemistry of Materials, 2019, 31, 10049-10062.	3.2	57
54	Exfoliation of 2D materials by high shear mixing. 2D Materials, 2019, 6, 015008.	2.0	67

#	Article	IF	CITATIONS
55	Graphene-coated polymer foams as tuneable impact sensors. Nanoscale, 2018, 10, 5366-5375.	2.8	50
56	Spectroscopic Size and Thickness Metrics for Liquid-Exfoliated <i>h</i> -BN. Chemistry of Materials, 2018, 30, 1998-2005.	3.2	65
57	Electroconductive Biohybrid Collagen/Pristine Graphene Composite Biomaterials with Enhanced Biological Activity. Advanced Materials, 2018, 30, e1706442.	11.1	81
58	Biological recognition of graphene nanoflakes. Nature Communications, 2018, 9, 1577.	5.8	75
59	Monolayer-enriched production of Au-decorated WS2 Nanosheets via Defect Engineering. MRS Advances, 2018, 3, 2435-2440.	0.5	3
60	Liquid Exfoliated Co(OH) ₂ Nanosheets as Lowâ€Cost, Yet Highâ€Performance, Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702965.	10.2	92
61	Dependence of Photocurrent Enhancements in Quantum Dot (QD)â€Sensitized MoS ₂ Devices on MoS ₂ Film Properties. Advanced Functional Materials, 2018, 28, 1706149.	7.8	20
62	Electrochemical water oxidation: The next five years. Current Opinion in Electrochemistry, 2018, 7, 31-35.	2.5	41
63	Charge trapping and coalescence dynamics in few layer MoS ₂ . 2D Materials, 2018, 5, 015011.	2.0	20
64	Ru ^{II} Photosensitizerâ€Functionalized Twoâ€Dimensional MoS ₂ for Lightâ€Driven Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 351-355.	1.7	21
65	Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries. 2D Materials, 2018, 5, 015024.	2.0	21
66	Nonradiative Energy Transfer and Photocurrent Enhancements in Hybrid Quantum Dot-MoS <inf>2</inf> Devices. , 2018, , .		0
67	Exfoliation in Endotoxinâ€Free Albumin Generates Pristine Graphene with Reduced Inflammatory Properties. Advanced Biology, 2018, 2, 1800102.	3.0	9
68	Non-resonant light scattering in dispersions of 2D nanosheets. Nature Communications, 2018, 9, 4553.	5.8	51
69	The Effect of Network Formation on the Mechanical Properties of 1D:2D Nano:Nano Composites. Chemistry of Materials, 2018, 30, 5245-5255.	3.2	33
70	Optimising composite viscosity leads to high sensitivity electromechancial sensors. 2D Materials, 2018, 5, 035042.	2.0	16
71	Quantifying the Role of Nanotubes in Nano:Nano Composite Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8, 1702364.	10.2	33
72	Probing the local nature of excitons and plasmons in few-layer MoS2. Npj 2D Materials and Applications, 2017, 1, .	3.9	58

#	Article	IF	CITATIONS
73	Industrial grade 2D molybdenum disulphide (MoS ₂): an <i>in vitro</i> exploration of the impact on cellular uptake, cytotoxicity, and inflammation. 2D Materials, 2017, 4, 025065.	2.0	57
74	Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Materials, 2017, 4, 025054.	2.0	39
75	All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356, 69-73.	6.0	391
76	The dependence of the measured surface energy of graphene on nanosheet size. 2D Materials, 2017, 4, 015040.	2.0	17
77	Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes. Nanotechnology, 2017, 28, 47LT02.	1.3	7
78	Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Advanced Materials, 2017, 29, 1702678.	11.1	756
79	Synthesis of layered platelets by self-assembly of rhenium-based clusters directed by long-chain amines. Npj 2D Materials and Applications, 2017, 1, .	3.9	3
80	Enabling Flexible Heterostructures for Liâ€ion Battery Anodes Based on Nanotube and Liquidâ€Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions. Small, 2017, 13, 1701677.	5.2	71
81	Tuneable photoconductivity and mobility enhancement in printed MoS ₂ /graphene composites. 2D Materials, 2017, 4, 041006.	2.0	13
82	Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensors. Nanoscale, 2017, 9, 18507-18515.	2.8	48
83	Robustness of Size Selection and Spectroscopic Size, Thickness and Monolayer Metrics of Liquidâ€Exfoliated WS ₂ . Physica Status Solidi (B): Basic Research, 2017, 254, 1700443.	0.7	26
84	Cobalt hydroxide nanoflakes and their application as supercapacitors and oxygen evolution catalysts. Nanotechnology, 2017, 28, 375401.	1.3	33
85	Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate handling Li-ion battery cathodes. Nano Energy, 2017, 39, 151-161.	8.2	123
86	Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. Chemistry of Materials, 2017, 29, 243-255.	3.2	401
87	An investigation of the energy storage properties of a 2D <i>α</i> -MoO ₃ -SWCNTs composite films. 2D Materials, 2017, 4, 015005.	2.0	20
88	Production of monolayer-rich gold-decorated 2H–WS2 nanosheets by defect engineering. Npj 2D Materials and Applications, 2017, 1, .	3.9	22
89	Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets. Optical Materials Express, 2016, 6, 3159.	1.6	44
90	2D rystalâ€Based Functional Inks. Advanced Materials, 2016, 28, 6136-6166.	11.1	371

#	Article	IF	CITATIONS
91	Photoluminescence from Liquidâ€Exfoliated WS ₂ Monomers in Poly(Vinyl Alcohol) Polymer Composites. Advanced Functional Materials, 2016, 26, 1028-1039.	7.8	73
92	White Graphene undergoes Peroxidase Degradation. Angewandte Chemie, 2016, 128, 5596-5601.	1.6	19
93	Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354, 1257-1260.	6.0	676
94	All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Applied Physics Letters, 2016, 109, .	1.5	68
95	Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes. Nanoscale, 2016, 8, 11698-11706.	2.8	11
96	Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS ₂ /Nanotube Composite Lithium Ion Battery Electrodes. ACS Nano, 2016, 10, 5980-5990.	7.3	159
97	Sub-5 nm graphene nanopore fabrication by nitrogen ion etching induced by a low-energy electron beam. Nanotechnology, 2016, 27, 195302.	1.3	13
98	Revealing the nature of excitons in liquid exfoliated monolayer tungsten disulphide. Nanotechnology, 2016, 27, 425701.	1.3	13
99	Slow and fast absorption saturation of black phosphorus: experiment and modelling. Nanoscale, 2016, 8, 17374-17382.	2.8	46
100	Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension. Macromolecular Rapid Communications, 2016, 37, 1790-1794.	2.0	6
101	Differentiating Defect and Basal Plane Contributions to the Surface Energy of Graphite Using Inverse Gas Chromatography. Chemistry of Materials, 2016, 28, 6355-6366.	3.2	27
102	Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy, 2016, 28, 495-505.	8.2	247
103	Liquid Phase Exfoliated MoS ₂ Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. ACS Nano, 2016, 10, 8821-8828.	7.3	258
104	Relating the optical absorption coefficient of nanosheet dispersions to the intrinsic monolayer absorption. Carbon, 2016, 107, 733-738.	5.4	35
105	Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects. Scientific Reports, 2016, 6, 19476.	1.6	111
106	Preparation of Liquid-exfoliated Transition Metal Dichalcogenide Nanosheets with Controlled Size and Thickness: A State of the Art Protocol. Journal of Visualized Experiments, 2016, , .	0.2	23
107	Production of Twoâ€Ðimensional Nanomaterials via Liquidâ€Based Direct Exfoliation. Small, 2016, 12, 272-293.	5.2	407
108	White Graphene undergoes Peroxidase Degradation. Angewandte Chemie - International Edition, 2016, 55, 5506-5511.	7.2	67

#	Article	IF	CITATIONS
109	Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared. ACS Nano, 2016, 10, 6923-6932.	7.3	231
110	Production of Ni(OH) ₂ nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	5.2	71
111	A comparison of catabolic pathways induced in primary macrophages by pristine single walled carbon nanotubes and pristine graphene. RSC Advances, 2016, 6, 65299-65310.	1.7	13
112	Materials science of graphene: a flagship perspective. 2D Materials, 2016, 3, 010401.	2.0	19
113	High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. Carbon, 2016, 99, 280-288.	5.4	40
114	Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS ₂ Nanosheet and Nanosheet–Carbon Nanotube Composite Catalytic Electrodes. ACS Nano, 2016, 10, 672-683.	7.3	116
115	Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents. Biomacromolecules, 2016, 17, 1845-1853.	2.6	29
116	Electrochemical Applications of Two-Dimensional Nanosheets: The Effect of Nanosheet Length and Thickness. Chemistry of Materials, 2016, 28, 2641-2651.	3.2	95
117	Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe ₂ to be the most effective hydrogen evolution catalyst. Nanoscale, 2016, 8, 5737-5749.	2.8	127
118	Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale, 2016, 8, 4311-4323.	2.8	194
119	Graphene-MoS ₂ nanosheet composites as electrodes for dye sensitised solar cells. Materials Research Express, 2016, 3, 035007.	0.8	12
120	A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. ACS Nano, 2016, 10, 3702-3713.	7.3	394
121	Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Materials and Design, 2016, 94, 87-94.	3.3	176
122	Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. ACS Nano, 2016, 10, 1589-1601.	7.3	365
123	Low wavenumber Raman spectroscopy of highly crystalline MoSe ₂ grown by chemical vapor deposition. Physica Status Solidi (B): Basic Research, 2015, 252, 2385-2389.	0.7	29
124	Yielding and flow of highly concentrated, few-layer graphene suspensions. Soft Matter, 2015, 11, 3159-3164.	1.2	17
125	Low wavenumber Raman spectroscopy of highly crystalline MoSe2 grown by chemical vapor deposition (Phys. Status Solidi B 11/2015). Physica Status Solidi (B): Basic Research, 2015, 252, .	0.7	0
126	Boron nitride nanosheets as barrier enhancing fillers in melt processed composites. Nanoscale, 2015, 7, 4443-4450.	2.8	56

#	Article	IF	CITATIONS
127	Functionalization of Liquidâ€Exfoliated Twoâ€Dimensional 2Hâ€MoS ₂ . Angewandte Chemie - International Edition, 2015, 54, 2638-2642.	7.2	219
128	Functionalization of Liquidâ€Exfoliated Twoâ€Ðimensional 2Hâ€MoS ₂ . Angewandte Chemie, 2015, 127, 2676-2680.	1.6	35
129	Large-Scale Production of Size-Controlled MoS ₂ Nanosheets by Shear Exfoliation. Chemistry of Materials, 2015, 27, 1129-1139.	3.2	389
130	Nanopatterning and Electrical Tuning of MoS ₂ Layers with a Subnanometer Helium Ion Beam. Nano Letters, 2015, 15, 5307-5313.	4.5	171
131	Avoiding Resistance Limitations in High-Performance Transparent Supercapacitor Electrodes Based on Large-Area, High-Conductivity PEDOT:PSS Films. ACS Applied Materials & Interfaces, 2015, 7, 16495-16506.	4.0	136
132	Inkjet Printing of Silver Nanowire Networks. ACS Applied Materials & amp; Interfaces, 2015, 7, 9254-9261.	4.0	235
133	Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano, 2015, 9, 6018-6030.	7.3	293
134	Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chemistry of Materials, 2015, 27, 3483-3493.	3.2	195
135	Tunable nonlinear refractive index of two-dimensional MoS_2, WS_2, and MoSe_2 nanosheet dispersions [Invited]. Photonics Research, 2015, 3, A51.	3.4	146
136	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	5.8	921
137	Ultrafast Nonlinear Absorption and Nonlinear Refraction of 2D Layered Molybdenum Dichalcogenide Semiconductors. , 2015, , .		1
138	Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS ₂ to WTe ₂ . Nanoscale, 2015, 7, 198-208.	2.8	76
139	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
140	Dibromocarbene Functionalization of Boron Nitride Nanosheets: Toward Band Gap Manipulation and Nanocomposite Applications. Chemistry of Materials, 2014, 26, 7039-7050.	3.2	82
141	Enhancing the mechanical properties of BN nanosheet–polymer composites by uniaxial drawing. Nanoscale, 2014, 6, 4889.	2.8	85
142	Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13, 624-630.	13.3	1,958
143	Relationship between Material Properties and Transparent Heater Performance for Both Bulk-like and Percolative Nanostructured Networks. ACS Nano, 2014, 8, 4805-4814.	7.3	132
144	Inkjet deposition of liquid-exfoliated graphene and MoS ₂ nanosheets for printed device applications. Journal of Materials Chemistry C, 2014, 2, 925-932.	2.7	256

#	Article	IF	CITATIONS
145	Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors. Chemistry of Materials, 2014, 26, 1751-1763.	3.2	266
146	Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites. ACS Nano, 2014, 8, 8819-8830.	7.3	708
147	Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 2014, 6, 10530-10535.	2.8	328
148	Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon, 2014, 78, 243-249.	5.4	136
149	Experimental and Theoretical Study of the Influence of the State of Dispersion of Graphene on the Percolation Threshold of Conductive Graphene/Polystyrene Nanocomposites. ACS Applied Materials & Interfaces, 2014, 6, 15113-15121.	4.0	41
150	Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nature Communications, 2014, 5, 4576.	5.8	432
151	Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale, 2014, 6, 11810-11819.	2.8	241
152	Insulatorâ€Conductor Type Transitions in Grapheneâ€Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors. Advanced Functional Materials, 2014, 24, 7580-7587.	7.8	33
153	Effect of Percolation on the Capacitance of Supercapacitor Electrodes Prepared from Composites of Manganese Dioxide Nanoplatelets and Carbon Nanotubes. ACS Nano, 2014, 8, 9567-9579.	7.3	89
154	Electrifying inks with 2D materials. Nature Nanotechnology, 2014, 9, 738-739.	15.6	116
155	Transparent Conductors: Insulatorâ€Conductor Type Transitions in Grapheneâ€Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors (Adv. Funct. Mater. 48/2014). Advanced Functional Materials, 2014, 24, 7562-7562.	7.8	0
156	Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply. Scientific Reports, 2014, 4, 7374.	1.6	72
157	Generalizing solubility parameter theory to apply to one―and twoâ€dimensional solutes and to incorporate dipolar interactions. Journal of Applied Polymer Science, 2013, 127, 4483-4491.	1.3	74
158	Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. Nanoscale, 2013, 5, 581-587.	2.8	181
159	A Technique To Pretreat Graphite Which Allows the Rapid Dispersion of Defect-Free Graphene in Solvents at High Concentration. Journal of Physical Chemistry C, 2013, 117, 19212-19218.	1.5	51
160	Ultrafast Saturable Absorption of Two-Dimensional MoS ₂ Nanosheets. ACS Nano, 2013, 7, 9260-9267.	7.3	905
161	Helium ion microscopy of graphene: beam damage, image quality and edge contrast. Nanotechnology, 2013, 24, 335702.	1.3	68
162	Liquid Exfoliation of Layered Materials. Science, 2013, 340, .	6.0	3,109

162 Liquid Exfoliation of Layered Materials. Science, 2013, 340, .

#	Article	IF	CITATIONS
163	Photoconductivity of solution-processed MoS2 films. Journal of Materials Chemistry C, 2013, 1, 6899.	2.7	99
164	Density controlled conductivity of pristine graphene films. Carbon, 2013, 64, 435-443.	5.4	22
165	Reinforcement of metal with liquid-exfoliated inorganic nano-platelets. Applied Physics Letters, 2013, 103, 163106.	1.5	14
166	Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon, 2013, 52, 363-371.	5.4	232
167	Thermoelectric behavior of organic thin film nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 119-123.	2.4	111
168	Development of MoS ₂ –CNT Composite Thin Film from Layered MoS ₂ for Lithium Batteries. Advanced Energy Materials, 2013, 3, 798-805.	10.2	282
169	Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Applied Materials & Interfaces, 2013, 5, 1423-1428.	4.0	112
170	Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering. Nanotechnology, 2013, 24, 265703.	1.3	214
171	Prussian blue-functionalised graphene in the amperometric detection of peroxide and hydrazine. Technology, 2013, 01, 58-62.	1.4	2
172	Polymer Grafting to Singleâ€Walled Carbon Nanotubes: Effect of Chain Length on Solubility, Graft Density and Mechanical Properties of Macroscopic Structures. Small, 2013, 9, 552-560.	5.2	42
173	Liquid Exfoliation of Defect-Free Graphene. Accounts of Chemical Research, 2013, 46, 14-22.	7.6	846
174	Manipulating connectivity in random nanowire networks to create evolutionary materials and devices. , 2012, , .		0
175	Flexible, transparent dielectric capacitors with nanostructured electrodes. Applied Physics Letters, 2012, 101, 103106.	1.5	36
176	Spray deposition of Silver Nanowire transparent conductive networks. , 2012, , .		1
177	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7, 699-712.	15.6	13,346
178	Autophagy induction by silver nanowires: A new aspect in the biocompatibility assessment of nanocomposite thin films. Toxicology and Applied Pharmacology, 2012, 264, 451-461.	1.3	61
179	Approaching the theoretical limit for reinforcing polymers with graphene. Journal of Materials Chemistry, 2012, 22, 1278-1282.	6.7	161

180 Carbon Nanotube network based sensors. , 2012, , .

#	Article	IF	CITATIONS
181	Manipulating Connectivity and Electrical Conductivity in Metallic Nanowire Networks. Nano Letters, 2012, 12, 5966-5971.	4.5	76
182	Percolation scaling in composites of exfoliated MoS2 filled with nanotubes and graphene. Nanoscale, 2012, 4, 6260.	2.8	75
183	The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter. Nanotechnology, 2012, 23, 185201.	1.3	125
184	Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers. Journal of Physical Chemistry C, 2012, 116, 11393-11400.	1.5	191
185	High Quality Dispersions of Hexabenzocoronene in Organic Solvents. Journal of the American Chemical Society, 2012, 134, 12168-12179.	6.6	49
186	Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. ACS Nano, 2012, 6, 3468-3480.	7.3	625
187	Oxygen Radical Functionalization of Boron Nitride Nanosheets. Journal of the American Chemical Society, 2012, 134, 18758-18771.	6.6	464
188	Using solution thermodynamics to describe the dispersion of rod-like solutes: application to dispersions of carbon nanotubes in organic solvents. Nanotechnology, 2012, 23, 265604.	1.3	17
189	Percolation Effects in Supercapacitors with Thin, Transparent Carbon Nanotube Electrodes. ACS Nano, 2012, 6, 1732-1741.	7.3	92
190	Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chemical Communications, 2012, 48, 6484.	2.2	113
191	Magnetism in nanoscale graphite flakes as seen via electron spin resonance. Physical Review B, 2012, 85,	1.1	13
192	High strength composite fibres from polyester filled with nanotubes and graphene. Journal of Materials Chemistry, 2012, 22, 12907.	6.7	42
193	Covalently Functionalized Hexagonal Boron Nitride Nanosheets by Nitrene Addition. Chemistry - A European Journal, 2012, 18, 10808-10812.	1.7	75
194	Preparation of High Concentration Dispersions of Exfoliated MoS ₂ with Increased Flake Size. Chemistry of Materials, 2012, 24, 2414-2421.	3.2	504
195	Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon, 2012, 50, 470-475.	5.4	272
196	Increased response/recovery lifetimes and reinforcement of polyaniline nanofiber films using carbon nanotubes. Carbon, 2012, 50, 1447-1454.	5.4	29
197	Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon, 2012, 50, 4489-4494.	5.4	68
198	Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Composites Science and Technology, 2012, 72, 235-242.	3.8	40

#	Article	IF	CITATIONS
199	Lateral size selection of surfactant-stabilised graphene flakes using size exclusion chromatography. Chemical Physics Letters, 2012, 531, 169-172.	1.2	21
200	High-Performance Transparent Conductors from Networks of Gold Nanowires. Journal of Physical Chemistry Letters, 2011, 2, 3058-3062.	2.1	84
201	Transparent conducting films from NbSe ₃ nanowires. Nanotechnology, 2011, 22, 285202.	1.3	8
202	DMF-exfoliated graphene for electrochemical NADH detection. Physical Chemistry Chemical Physics, 2011, 13, 7747.	1.3	81
203	Solvent-Exfoliated Graphene at Extremely High Concentration. Langmuir, 2011, 27, 9077-9082.	1.6	308
204	Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. Journal of Physical Chemistry C, 2011, 115, 5422-5428.	1.5	440
205	The effects of percolation in nanostructured transparent conductors. MRS Bulletin, 2011, 36, 774-781.	1.7	215
206	Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011, 331, 568-571.	6.0	6,190
207	Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Applied Physics Letters, 2011, 99, .	1.5	149
208	Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites. Composites Science and Technology, 2011, 71, 1030-1038.	3.8	80
209	Tuning the Mechanical Properties of Composites from Elastomeric to Rigid Thermoplastic by Controlled Addition of Carbon Nanotubes. Small, 2011, 7, 1579-1586.	5.2	31
210	Spray Deposition of Highly Transparent, Lowâ€Resistance Networks of Silver Nanowires over Large Areas. Small, 2011, 7, 2621-2628.	5.2	282
211	The Effect of Nanotube Content and Orientation on the Mechanical Properties of Polymer-Nanotube Composite Fibers: Separating Intrinsic Reinforcement from Orientational Effects. Advanced Functional Materials, 2011, 21, 364-371.	7.8	70
212	Electrical Characteristics of Molybdenum Disulfide Flakes Produced by Liquid Exfoliation. Advanced Materials, 2011, 23, 4178-4182.	11.1	224
213	Largeâ€Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Materials, 2011, 23, 3944-3948.	11.1	1,012
214	Nitrogen assisted etching of graphene layers in a scanning electron microscope. Applied Physics Letters, 2011, 98, .	1.5	53
215	Nanotube Surfactant Design: The Versatility of Water oluble Perylene Bisimides. Advanced Materials, 2010, 22, 788-802.	11.1	134
216	Enhanced Adsorption Affinity of Anionic Peryleneâ€Based Surfactants towards Smallerâ€Diameter SWCNTs. Chemistry - A European Journal, 2010, 16, 13185-13192.	1.7	25

#	Article	IF	CITATIONS
217	The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties. Carbon, 2010, 48, 2825-2830.	5.4	103
218	Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon, 2010, 48, 4035-4041.	5.4	270
219	Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactantâ€Stabilized, Oxideâ€Free Graphene Dispersions. Small, 2010, 6, 458-464.	5.2	371
220	High oncentration Solvent Exfoliation of Graphene. Small, 2010, 6, 864-871.	5.2	908
221	Inverting Polyurethanes Synthesis: Effects on Nano/Micro-Structure and Mechanical Properties. Soft Materials, 2010, 9, 79-93.	0.8	25
222	Nonlinear Transmission, Scattering and Optical Limiting Studies of Graphene Dispersions. , 2010, , .		0
223	Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. Journal of Materials Chemistry, 2010, 20, 7864.	6.7	224
224	The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics, 2010, 12, 125008.	1.2	254
225	New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants. Journal of Physical Chemistry C, 2010, 114, 231-237.	1.5	108
226	Selective Mechanical Reinforcement of Thermoplastic Polyurethane by Targeted Insertion of Functionalized SWCNTs. Journal of Physical Chemistry C, 2010, 114, 11401-11408.	1.5	45
227	Dispersion and Exfoliation of Nanotubes with Synthetic Oligonucleotides: Variation of Dispersion Efficiency and Oligo-Nanotube Interaction with Base Type. Journal of Physical Chemistry C, 2010, 114, 11741-11747.	1.5	16
228	Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir, 2010, 26, 3208-3213.	1.6	566
229	High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano, 2010, 4, 3155-3162.	7.3	911
230	Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films?. ACS Nano, 2010, 4, 2713-2720.	7.3	511
231	Improvement of Transparent Conducting Nanotube Films by Addition of Small Quantities of Graphene. ACS Nano, 2010, 4, 4238-4246.	7.3	111
232	Control of Optical Limiting of Carbon Nanotube Dispersions by Changing Solvent Parameters. Journal of Physical Chemistry C, 2010, 114, 6148-6156.	1.5	42
233	Strong Dependence of Mechanical Properties on Fiber Diameter for Polymerâ``Nanotube Composite Fibers: Differentiating Defect from Orientation Effects. ACS Nano, 2010, 4, 6989-6997.	7.3	73
234	Very thin transparent, conductive carbon nanotube films on flexible substrates. Applied Physics Letters, 2010, 97, .	1.5	120

#	Article	IF	CITATIONS
235	Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano, 2010, 4, 7064-7072.	7.3	290
236	Liquidâ€Phase Exfoliation of Nanotubes and Graphene. Advanced Functional Materials, 2009, 19, 3680-3695.	7.8	588
237	Broadband Nonlinear Optical Response of Graphene Dispersions. Advanced Materials, 2009, 21, 2430-2435.	11.1	486
238	Preparation of Buckypaper–Copper Composites and Investigation of their Conductivity and Mechanical Properties. ChemPhysChem, 2009, 10, 774-777.	1.0	15
239	Carbonâ€Nanotube–Polymer Nanocomposites for Fieldâ€Emission Cathodes. Small, 2009, 5, 826-831.	5.2	70
240	Highâ€Strength, Highâ€Toughness Composite Fibers by Swelling Kevlar in Nanotube Suspensions. Small, 2009, 5, 466-469.	5.2	85
241	Quantitative comparison of ultracentrifuged and diluted single walled nanotube dispersions; differences in dispersion quality. Chemical Physics Letters, 2009, 474, 122-126.	1.2	19
242	Development of transparent, conducting composites by surface infiltration of nanotubes into commercial polymer films. Carbon, 2009, 47, 1983-1988.	5.4	37
243	Mechanical properties of individual electrospun polymer-nanotube composite nanofibers. Carbon, 2009, 47, 2253-2258.	5.4	49
244	The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon, 2009, 47, 2466-2473.	5.4	165
245	Upper bound for the conductivity of nanotube networks. Applied Physics Letters, 2009, 95, 123106.	1.5	29
246	Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. ACS Nano, 2009, 3, 1767-1774.	7.3	1,472
247	High-pressure Raman spectroscopy of graphene. Physical Review B, 2009, 80, .	1.1	188
248	Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 2009, 131, 3611-3620.	6.6	2,038
249	Electrical Connectivity in Single-Walled Carbon Nanotube Networks. Nano Letters, 2009, 9, 3890-3895.	4.5	425
250	Effects of Ambient Conditions on Solventâ^'Nanotube Dispersions: Exposure to Water and Temperature Variation. Journal of Physical Chemistry C, 2009, 113, 1260-1266.	1.5	16
251	Multicomponent Solubility Parameters for Single-Walled Carbon Nanotubeâ^'Solvent Mixtures. ACS Nano, 2009, 3, 2340-2350.	7.3	347
252	Polymer Reinforcement with Kevlar-Coated Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 20184-20192.	1.5	38

#	Article	IF	CITATIONS
253	Transparent, Flexible, and Highly Conductive Thin Films Based on Polymerâ^Nanotube Composites. ACS Nano, 2009, 3, 714-720.	7.3	271
254	Strong, Tough, Electrospun Polymer–Nanotube Composite Membranes with Extremely Low Density. Advanced Functional Materials, 2008, 18, 2618-2624.	7.8	59
255	Towards Solutions of Singleâ€Walled Carbon Nanotubes in Common Solvents. Advanced Materials, 2008, 20, 1876-1881.	11.1	333
256	Quantifying the contributions of inner-filter, re-absorption and aggregation effects in the photoluminescence of high-concentration conjugated polymer solutions. Journal of Luminescence, 2008, 128, 31-40.	1.5	24
257	On the factors controlling the mechanical properties of nanotube films. Carbon, 2008, 46, 41-47.	5.4	49
258	High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3, 563-568.	15.6	5,431
259	Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scripta Materialia, 2008, 58, 69-72.	2.6	56
260	A new solution to graphene production. SPIE Newsroom, 2008, , .	0.1	1
261	Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersion Quality and Its Correlation with Zeta Potential. Journal of Physical Chemistry C, 2008, 112, 10692-10699.	1.5	343
262	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Need for Ultracentrifugation. Journal of Physical Chemistry C, 2008, 112, 972-977.	1.5	75
263	Kevlar coated carbon nanotubes for reinforcement of polyvinylchloride. Journal of Materials Chemistry, 2008, 18, 5585.	6.7	45
264	Ordered DNA Wrapping Switches on Luminescence in Single-Walled Nanotube Dispersions. Journal of the American Chemical Society, 2008, 130, 12734-12744.	6.6	119
265	High Quality Dispersions of Functionalized Single Walled Nanotubes at High Concentration. Journal of Physical Chemistry C, 2008, 112, 3519-3524.	1.5	56
266	Spontaneous Exfoliation of Single-Walled Carbon Nanotubes Dispersed Using a Designed Amphiphilic Peptide. Biomacromolecules, 2008, 9, 598-602.	2.6	32
267	Towards tough, yet stiff, composites by filling an elastomer with single-walled nanotubes at very high loading levels. Nanotechnology, 2008, 19, 415709.	1.3	30
268	Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives. Nanotechnology, 2008, 19, 485702.	1.3	6
269	The relationship between network morphology and conductivity in nanotube films. Journal of Applied Physics, 2008, 104, .	1.1	119
270	Dispersion and purification of Mo6S3I6 nanowires in organic solvents. Journal of Applied Physics, 2007, 101, 014317.	1.1	35

#	ARTICLE	IF	CITATIONS
271	display=''inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Mo<mml:mn>6</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">S<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">I<mml:mn>6</mml:mn></mml:mi </mml:msub></mml:mrow> nanowires.	1.1	14
272	Physical Review B, 2007, 76, . Transport and field emission in carbon nanotube - polymer composite cathodes. , 2007, , .		0
273	Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. Journal of Physical Chemistry C, 2007, 111, 66-74.	1.5	93
274	Toughening of Artificial Silk by Incorporation of Carbon Nanotubes. Biomacromolecules, 2007, 8, 3973-3976.	2.6	24
275	Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. Journal of Materials Chemistry, 2007, 17, 2351.	6.7	69
276	Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug Î ³ -butyrolactone. Nanotechnology, 2007, 18, 455705.	1.3	45
277	Exfoliation of Mo6SxI9-xnanowires in common solvents. EPJ Applied Physics, 2007, 37, 149-159.	0.3	16
278	Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers. Advanced Functional Materials, 2007, 17, 2918-2924.	7.8	55
279	Observation of van der Waals Driven Self-Assembly of MoSI Nanowires into a Low-Symmetry Structure Using Aberration-Corrected Electron Microscopy. Advanced Materials, 2007, 19, 543-547.	11.1	42
280	Observation of Percolationâ€like Scaling – Far from the Percolation Threshold – in High Volume Fraction, High Conductivity Polymerâ€Nanotube Composite Films. Advanced Materials, 2007, 19, 4443-4447.	11.1	89
281	Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). Composites Science and Technology, 2007, 67, 1640-1649.	3.8	110
282	The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites. Composites Science and Technology, 2007, 67, 3158-3167.	3.8	56
283	Nonlinear optical response of Mo6S4.5I4.5 nanowires. Chemical Physics Letters, 2007, 435, 109-113.	1.2	15
284	Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. Journal of Materials Chemistry, 2006, 16, 4206.	6.7	90
285	Debundling of Single-Walled Nanotubes by Dilution:Â Observation of Large Populations of Individual Nanotubes in Amide Solvent Dispersions. Journal of Physical Chemistry B, 2006, 110, 15708-15718.	1.2	330
286	Multiwalled carbon nanotube nucleated crystallization and reinforcement in poly (vinyl alcohol) composites. Synthetic Metals, 2006, 156, 332-335.	2.1	55
287	Three-dimensional Characterisation of Nanomaterials Using Aberration-Corrected STEM. Microscopy and Microanalysis, 2006, 12, 1338-1339.	0.2	0
288	Mo6S4.5I4.5Nanowires: Structure Studies by HRTEM and Aberration Corrected STEM. Journal of Physics: Conference Series, 2006, 26, 260-263.	0.3	2

#	Article	IF	CITATIONS
289	Quantification of ADF STEM images of molybdenum chalcogenide nanowires. Journal of Physics: Conference Series, 2006, 26, 280-283.	0.3	3
290	Fabrication of stable dispersions containing up to 70% individual carbon nanotubes in a common organic solvent. Physica Status Solidi (B): Basic Research, 2006, 243, 3058-3062.	0.7	41
291	Physical properties of novel free-standing polymer–nanotube thin films. Carbon, 2006, 44, 1525-1529.	5.4	41
292	Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 2006, 44, 1624-1652.	5.4	3,611
293	Debundling by dilution: Observation of significant populations of individual MoSI nanowires in high concentration dispersions. Chemical Physics Letters, 2006, 425, 89-93.	1.2	28
294	Reinforcement of polymers with carbon nanotubes. The role of an orderedÂpolymer interfacial region. Experiment and modeling. Polymer, 2006, 47, 8556-8561.	1.8	224
295	Observation of extremely low percolation threshold in MoSI nanowire/polymer composites. Scripta Materialia, 2006, 54, 417-420.	2.6	34
296	Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)-Based Composites by the Incorporation of Poly(methyl methacrylate)-Functionalized Nanotubes. Advanced Functional Materials, 2006, 16, 1608-1614.	7.8	219
297	Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Advanced Materials, 2006, 18, 689-706.	11.1	1,504
298	EFFECT OF SOLVENT AND DISPERSANT ON THE BUNDLE DISSOCIATION OF SINGLE-WALLED CARBON NANOTUBES. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2006, , 211-212.	0.1	0
299	Optical Absorption and Photo-Luminescence Spectra of Molecular van der Waals Systems: Frenkel Exciton Resonance Effects. Macromolecular Symposia, 2005, 230, 116-125.	0.4	1
300	Effect of solvent and dispersant on the bundle dissociation of single-walled carbon nanotube. , 2005, , .		3
301	Mo 6 S 4.5 I 4.5 nanowires: dispersion studies and electron microscopy characterization of the bundles. , 2005, , .		0
302	Biomolecules as selective dispersants for carbon nanotubes. Carbon, 2005, 43, 1879-1884.	5.4	71
303	Solubility of Mo6S4.5I4.5 nanowires. Chemical Physics Letters, 2005, 401, 13-18.	1.2	55
304	Effect of Solvents and Dispersants on the Bundle Dissociation of Single-walled Carbon Nanotube. AIP Conference Proceedings, 2005, , .	0.3	4
305	Observation of Extremely Low Percolation Threshold in Mo6S4.5I4.5 nanowire/polymer composites. AIP Conference Proceedings, 2005, , .	0.3	1
306	Characterisation of Single-walled Carbon Nanotube Bundle Dissociation in Amide Solvents. AIP Conference Proceedings, 2005, , .	0.3	1

#	Article	IF	CITATIONS
307	Charge transport effects in field emission from carbon nanotube-polymer composites. Applied Physics Letters, 2005, 87, 263105.	1.5	78
308	Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. Physical Review B, 2005, 72, .	1.1	75
309	Physical mechanism for the mechanical reinforcement in nanotube-polymer composite materials. Physical Review B, 2005, 71, .	1.1	32
310	Carbon Nanotube Nucleated Polymer Crystallization. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 431-434.	1.0	12
311	Solubility of Mo6S4.5I4.5Nanowires in Common Solvents:Â A Sedimentation Study. Journal of Physical Chemistry B, 2005, 109, 7124-7133.	1.2	105
312	Alternating and direct current characterization and photoinduced absorption studies of modified conjugated polymer thin films. Journal of Applied Physics, 2004, 95, 6138-6144.	1.1	7
313	Geometric constraints in the growth of nanotube-templated polymer monolayers. Applied Physics Letters, 2004, 84, 798-800.	1.5	44
314	A Generic Organometallic Approach toward Ultra-Strong Carbon Nanotube Polymer Composites. Journal of the American Chemical Society, 2004, 126, 10226-10227.	6.6	227
315	Multifunctional Carbon Nanotube Composite Fibers. Advanced Engineering Materials, 2004, 6, 801-804.	1.6	57
316	High Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. Advanced Functional Materials, 2004, 14, 791-798.	7.8	575
317	Carbon-nanotube nucleated crystallinity in a conjugated polymer based composite. Chemical Physics Letters, 2004, 391, 329-333.	1.2	86
318	Binding Kinetics and SWNT Bundle Dissociation in Low Concentration Polymerâ^'Nanotube Dispersions. Journal of Physical Chemistry B, 2004, 108, 3446-3450.	1.2	65
319	Air-stable monodispersed Mo6S3I6nanowires. Nanotechnology, 2004, 15, 635-638.	1.3	112
320	Continuous carbon nanotube composite fibers: properties, potential applications, and problemsElectronic supplementary information (ESI) available: frontispiece figure. See http://www.rsc.org/suppdata/jm/b3/b312092a/. Journal of Materials Chemistry, 2004, 14, 1.	6.7	247
321	Reinforcement of Polymers with Carbon Nanotubes:Â The Role of Nanotube Surface Area. Nano Letters, 2004, 4, 353-356.	4.5	456
322	Super-tough carbon-nanotube fibres. Nature, 2003, 423, 703-703.	13.7	1,394
323	Selective Interaction in a Polymerâ^'Single-Wall Carbon Nanotube Composite. Journal of Physical Chemistry B, 2003, 107, 478-482.	1.2	128
324	Optical Spectroscopy of Isolated and Aggregate Hexabenzocoronene Derivatives:Â A Study of Self-Assembling Molecular Nanowires. Journal of Physical Chemistry B, 2003, 107, 37-43.	1.2	49

#	Article	IF	CITATIONS
325	Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. Optics Letters, 2003, 28, 266.	1.7	44
326	Nonlinear optical response of multiwalled carbon-nanotube dispersions. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 49.	0.9	78
327	Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle Dispersions. Journal of Physical Chemistry B, 2003, 107, 958-964.	1.2	97
328	Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Applied Physics Letters, 2003, 82, 1682-1684.	1.5	253
329	Mechanical and thermal properties of carbon-nanotube-reinforced polymer composites. , 2003, 4876, 676.		4
330	Carbon Nanotube Composites as Efficient Charge Transport Media in Organic Optoelectronic Devices. , 2003, 4876, 338.		0
331	Comparative study of two polymer carbon nanotube composites using electron paramagnetic resonance and transmission electron microscopy. , 2003, , .		0
332	Optical spectroscopy of single-molecule and aggregate hexabenzocoronene derivatives. , 2003, , .		0
333	Intermolecular vibronic coupling in self-assembling molecular nanowires of hexabenzocoronene derivatives. , 2003, 4991, 460.		1
334	Third-order nonlinear optical response and nonlinear photoluminescence in multiwalled carbon nanotubes. , 2003, 4876, 649.		0
335	Photoluminescence quenching and degradation studies to determine the effect of nanotube inclusions on polymer morphology in conjugated polymer-carbon nanotube composites. , 2003, , .		1
336	Nanosecond nonlinear optical extinction in dispersed multi walled carbon nanotubes excited at 532 nm. , 2003, , .		0
337	Characterization of nanotube-based artificial muscle materials. , 2003, , .		3
338	Optical and electrical studies of modified conjugated polymer films. , 2003, , .		0
339	Optical limiting properties of carbon nanostructure and polymer dispersions. , 2003, 4991, 194.		0
340	Mechanical properties of hybrid polymer nanotube systems. , 2003, , .		0
341	Distributed response analysis of conductive behavior in single molecules. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6514-6517.	3.3	5
342	Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. , 2002, , .		2

#	Article	IF	CITATIONS
343	High-Yield, Nondestructive Purification and Quantification Method for Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 3087-3091.	1.2	104
344	A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer. Journal of Physical Chemistry B, 2002, 106, 2210-2216.	1.2	221
345	Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics, 2002, 92, 4024-4030.	1.1	713
346	Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Applied Physics Letters, 2002, 81, 5123-5125.	1.5	599
347	Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon, 2002, 40, 923-928.	5.4	92
348	Microscopy studies of nanotube-conjugated polymer interactions. Synthetic Metals, 2001, 121, 1225-1226.	2.1	66
349	A functional conjugated polymer to process, purify and selectively interact with single wall carbon nanotubes. Synthetic Metals, 2001, 121, 1217-1218.	2.1	52
350	High electron injection currents from a nanotube composite in an organic heterojunction. Synthetic Metals, 2001, 121, 1227-1228.	2.1	8
351	Solubility and purity of nanotubes in arc discharge carbon powder. Synthetic Metals, 2001, 121, 1229-1230.	2.1	13
352	A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes. Synthetic Metals, 2001, 121, 1683-1684.	2.1	35
353	lsomerism and inter-chain effects in a semi-conjugated co-polymer, poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene). Synthetic Metals, 2001, 119, 557-558.	2.1	1
354	Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers. Synthetic Metals, 2001, 119, 151-152.	2.1	18
355	Nonlinear photoluminescence in multiwall carbon nanotubes. Synthetic Metals, 2001, 119, 641-642.	2.1	10
356	MRS 2001 (Boston): Design and Quantification of a Nanoscale Field Effect Transistor: Distributed Response Analysis for Investigating Conductive Behaviour Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	0
357	<title>Purification and processing of carbon nanotubes using self-assembly and selective interaction with a semiconjugated polymer</title> . , 2001, 4468, 112.		0
358	Nanotube Content in Arc Generated Carbon Powder. Monatshefte Für Chemie, 2001, 132, 53-61.	0.9	5
359	Controlling the optical properties of a conjugated co-polymer through variation of backbone isomerism and the introduction of carbon nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 144, 31-41.	2.0	39
360	Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interactions. Chemical Physics Letters, 2001, 350, 27-32.	1.2	27

#	Article	IF	CITATIONS
361	Nonlinear photoluminescence from multiwalled carbon nanotubes. , 2001, 4461, 56.		1
362	Complex nano-assemblies of polymers and carbon nanotubes. Nanotechnology, 2001, 12, 187-190.	1.3	38
363	Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. Journal of Applied Physics, 2001, 90, 969-975.	1.1	112
364	Purity and Solubility of Nanotubes in Arc Discharge Carbon Powder. Materials Research Society Symposia Proceedings, 2000, 633, 1361.	0.1	0
365	Solubility of carbon nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 531.	0.1	0
366	Phase Separation of Carbon Nanotubes and Turbostratic Graphite Using a Functional Organic Polymer. Advanced Materials, 2000, 12, 213-216.	11.1	185
367	Observation of site selective binding in a polymer nanotube composite. Journal of Materials Science Letters, 2000, 19, 2239-2241.	0.5	59
368	Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes. Journal of Chemical Physics, 2000, 113, 9788-9793.	1.2	39
369	Measurement of nanotube content in pyrolytically generated carbon soot. Chemical Communications, 2000, , 2001-2002.	2.2	17
370	Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes. Journal of Physical Chemistry B, 2000, 104, 10012-10016.	1.2	254
371	Evolution and evaluation of the polymer/nanotube composite. Synthetic Metals, 1999, 103, 2559-2562.	2.1	92
372	Physical Doping of a Conjugated Polymer with Carbon Nanotubes. Synthetic Metals, 1999, 102, 1174-1175.	2.1	93
373	Optical Absorption and Fluorescence of a Multi-walled Nanotube-Polymer Composite. Synthetic Metals, 1999, 102, 1176-1177.	2.1	40
374	A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics. Advanced Materials, 1998, 10, 1091-1093.	11.1	601
375	Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Physical Review B, 1998, 58, R7492-R7495.	1.1	406