Jonathan N Coleman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2231618/jonathan-n-coleman-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

269 73,026 105 357 h-index g-index citations papers 8.02 80,297 383 9.7 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
357	Quantifying the Piezoresistive Mechanism in High-Performance Printed Graphene Strain Sensors <i>ACS Applied Materials & Discrete Sensors</i> . 14, 7141-7151	9.5	2
356	Highly Conductive Networks of Silver Nanosheets Small, 2022, e2105996	11	2
355	Quantifying the Effect of Separator Thickness on Rate Performance in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022 , 169, 030503	3.9	3
354	Liquid phase exfoliation of nonlayered non-van der Waals iron trifluoride (FeF3) into 2D-platelets for high-capacity lithium storing cathodes. <i>FlatChem</i> , 2022 , 33, 100360	5.1	4
353	Liquid-phase Exfoliation of Nonlayered non-van der Waals Crystals into Nanoplatelets <i>Advanced Materials</i> , 2022 , e2202164	24	6
352	Additive Manufacturing of Ti C MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding. <i>Advanced Materials</i> , 2021 , e2106253	24	19
351	2D nanosheets from fool® gold by LPE: High performance lithium-ion battery anodes made from stone. <i>FlatChem</i> , 2021 , 30, 100295	5.1	4
350	A Simple Model Relating Gauge Factor to Filler Loading in Nanocomposite Strain Sensors <i>ACS Applied Nano Materials</i> , 2021 , 4, 2876-2886	5.6	11
349	Printable G-Putty for Frequency- and Rate-Independent, High-Performance Strain Sensors. <i>Small</i> , 2021 , 17, e2006542	11	7
348	On the relationship between morphology and conductivity in nanosheet networks. <i>Carbon</i> , 2021 , 171, 306-319	10.4	11
347	Label-free screening of biochemical changes in macrophage-like cells following MoS exposure using Raman micro-spectroscopy. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2021 , 246, 118916	4.4	3
346	Liquid Exfoliated SnP3 Nanosheets for Very High Areal Capacity Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2002364	21.8	17
345	Tuning the Photo-electrochemical Performance of Ru -Sensitized Two-Dimensional MoS. <i>Chemistry - A European Journal</i> , 2021 , 27, 984-992	4.8	2
344	Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. <i>Nature Nanotechnology</i> , 2021 , 16, 592-598	28.7	22
343	Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. <i>Advanced Functional Materials</i> , 2020 , 30, 2002473	15.6	29
342	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. <i>Energy and Environmental Science</i> , 2020 , 13, 2124-2133	35.4	20
341	Pristine graphene induces innate immune training. <i>Nanoscale</i> , 2020 , 12, 11192-11200	7.7	16

(2020-2020)

340	Using chronoamperometry to rapidly measure and quantitatively analyse rate-performance in battery electrodes. <i>Journal of Power Sources</i> , 2020 , 468, 228220	8.9	9
339	Effect of Surfactant Choice and Concentration on the Dimensions and Yield of Liquid-Phase-Exfoliated Nanosheets. <i>Chemistry of Materials</i> , 2020 , 32, 2852-2862	9.6	15
338	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10	9 86 .7	59
337	Effect of the Gate Volume on the Performance of Printed Nanosheet Network-Based Transistors. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 2164-2170	4	2
336	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001	5.9	179
335	The Rate Performance of Two-Dimensional Material-Based Battery Electrodes May Not Be as Good as Commonly Believed. <i>ACS Nano</i> , 2020 , 14, 3129-3140	16.7	36
334	Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. <i>National Science Review</i> , 2020 , 7, 1360-1366	10.8	27
333	High Charge and Discharge Rate Limitations in Ordered Macroporous Li-ion Battery Materials. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 140532	3.9	2
332	Developing models to fit capacitylate data in battery systems. <i>Current Opinion in Electrochemistry</i> , 2020 , 21, 1-6	7.2	7
331	Electronic Polarizability as the Fundamental Variable in the Dielectric Properties of Two-Dimensional Materials. <i>Nano Letters</i> , 2020 , 20, 841-851	11.5	31
330	High Performance Na-O Batteries and Printed Microsupercapacitors Based on Water-Processable, Biomolecule-Assisted Anodic Graphene. <i>ACS Applied Materials & District Amplied Materials & District & District Amplied Materials & District & Distri</i>	9.5	15
329	In vitrolocalisation and degradation of few-layer MoS2submicrometric plates in human macrophage-like cells: a label free Raman micro-spectroscopic study. <i>2D Materials</i> , 2020 , 7, 025003	5.9	8
328	All-Printed Dielectric Capacitors from High-Permittivity, Liquid-Exfoliated BiOCl Nanosheets. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3233-3241	4	10
327	Quantifying the Dependence of Battery Rate Performance on Electrode Thickness. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10154-10163	6.1	8
326	Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2966-2974	6.1	34
325	Low cost, high performance ultrafiltration membranes from glass fiber-PTFE-graphene composites. <i>Scientific Reports</i> , 2020 , 10, 21123	4.9	5
324	Production of Quasi-2D Platelets of Nonlayered Iron Pyrite (FeS) by Liquid-Phase Exfoliation for High Performance Battery Electrodes. <i>ACS Nano</i> , 2020 , 14, 13418-13432	16.7	20
323	Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications. <i>2D Materials</i> , 2020 , 7, 035015	5.9	18

322	Ferroelectric Behavior in Exfoliated 2D Aurivillius Oxide Flakes of Sub-Unit Cell Thickness. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901264	6.4	13
321	Liquid phase exfoliation of carbonate-intercalated layered double hydroxides. <i>Chemical Communications</i> , 2019 , 55, 3315-3318	5.8	30
320	Percolation Effects in Electrolytically Gated WS/Graphene Nano:Nano Composites. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	16
319	High areal capacity battery electrodes enabled by segregated nanotube networks. <i>Nature Energy</i> , 2019 , 4, 560-567	62.3	153
318	Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS Nanosheets. <i>ACS Nano</i> , 2019 , 13, 6845-6855	16.7	37
317	Equipartition of Energy Defines the Size-Thickness Relationship in Liquid-Exfoliated Nanosheets. <i>ACS Nano</i> , 2019 , 13, 7050-7061	16.7	71
316	Quantifying the factors limiting rate[performance in battery electrodes. <i>Nature Communications</i> , 2019 , 10, 1933	17.4	114
315	Additive-free MXene inks and direct printing of micro-supercapacitors. <i>Nature Communications</i> , 2019 , 10, 1795	17.4	407
314	Solvent exfoliation stabilizes TiS nanosheets against oxidation, facilitating lithium storage applications. <i>Nanoscale</i> , 2019 , 11, 6206-6216	7.7	26
313	Liquid phase exfoliation of MoO2 nanosheets for lithium ion battery applications. <i>Nanoscale Advances</i> , 2019 , 1, 1560-1570	5.1	29
312	Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey. <i>2D Materials</i> , 2019 , 6, 045036	5.9	18
311	Self-Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. <i>Advanced Functional Materials</i> , 2019 , 29, 1903120	15.6	7
310	Quantifying the Trade-Off between Absolute Capacity and Rate Performance in Battery Electrodes. <i>Advanced Energy Materials</i> , 2019 , 9, 1901359	21.8	28
309	High capacity silicon anodes enabled by MXene viscous aqueous ink. <i>Nature Communications</i> , 2019 , 10, 849	17.4	174
308	Length- and Thickness-Dependent Optical Response of Liquid-Exfoliated Transition Metal Dichalcogenides. <i>Chemistry of Materials</i> , 2019 , 31, 10049-10062	9.6	27
307	Exfoliation of 2D materials by high shear mixing. 2D Materials, 2019, 6, 015008	5.9	43
306	Graphene-coated polymer foams as tuneable impact sensors. <i>Nanoscale</i> , 2018 , 10, 5366-5375	7.7	36
305	Spectroscopic Size and Thickness Metrics for Liquid-Exfoliated h-BN. <i>Chemistry of Materials</i> , 2018 , 30, 1998-2005	9.6	43

(2017-2018)

304	Electroconductive Biohybrid Collagen/Pristine Graphene Composite Biomaterials with Enhanced Biological Activity. <i>Advanced Materials</i> , 2018 , 30, e1706442	24	60	
303	Biological recognition of graphene nanoflakes. <i>Nature Communications</i> , 2018 , 9, 1577	17.4	55	
302	Monolayer-enriched production of Au-decorated WS2 Nanosheets via Defect Engineering. <i>MRS Advances</i> , 2018 , 3, 2435-2440	0.7	2	
301	Liquid Exfoliated Co(OH)2 Nanosheets as Low-Cost, Yet High-Performance, Catalysts for the Oxygen Evolution Reaction. <i>Advanced Energy Materials</i> , 2018 , 8, 1702965	21.8	75	
300	Dependence of Photocurrent Enhancements in Quantum Dot (QD)-Sensitized MoS2 Devices on MoS2 Film Properties. <i>Advanced Functional Materials</i> , 2018 , 28, 1706149	15.6	14	
299	Electrochemical water oxidation: The next five years. Current Opinion in Electrochemistry, 2018, 7, 31-35	7.2	32	
298	Charge trapping and coalescence dynamics in few layer MoS 2. 2D Materials, 2018, 5, 015011	5.9	18	
297	The Effect of Network Formation on the Mechanical Properties of 1D:2D Nano:Nano Composites. <i>Chemistry of Materials</i> , 2018 , 30, 5245-5255	9.6	27	
296	Optimising composite viscosity leads to high sensitivity electromechancial sensors. <i>2D Materials</i> , 2018 , 5, 035042	5.9	11	
295	Ru Photosensitizer-Functionalized Two-Dimensional MoS for Light-Driven Hydrogen Evolution. <i>Chemistry - A European Journal</i> , 2018 , 24, 351-355	4.8	15	
294	Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries. <i>2D Materials</i> , 2018 , 5, 015024	5.9	17	
293	Exfoliation in Endotoxin-Free Albumin Generates Pristine Graphene with Reduced Inflammatory Properties. <i>Advanced Biology</i> , 2018 , 2, 1800102	3.5	7	
292	Non-resonant light scattering in dispersions of 2D nanosheets. <i>Nature Communications</i> , 2018 , 9, 4553	17.4	37	
291	Quantifying the Role of Nanotubes in Nano:Nano Composite Supercapacitor Electrodes. <i>Advanced Energy Materials</i> , 2018 , 8, 1702364	21.8	25	
290	Probing the local nature of excitons and plasmons in few-layer MoS2. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	41	
289	Industrial grade 2D molybdenum disulphide (MoS 2): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation. <i>2D Materials</i> , 2017 , 4, 025065	5.9	36	
288	Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. <i>2D Materials</i> , 2017 , 4, 025054	5.9	29	
287	All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. <i>Science</i> , 2017 , 356, 69-73	333.3	301	

286	The dependence of the measured surface energy of graphene on nanosheet size. <i>2D Materials</i> , 2017 , 4, 015040	5.9	13
285	Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes. <i>Nanotechnology</i> , 2017 , 28, 47LT02	3.4	5
284	Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. <i>Advanced Materials</i> , 2017 , 29, 1702678	24	538
283	Synthesis of layered platelets by self-assembly of rhenium-based clusters directed by long-chain amines. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	3
282	Enabling Flexible Heterostructures for Li-Ion Battery Anodes Based on Nanotube and Liquid-Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions. <i>Small</i> , 2017 , 13, 1701677	11	57
281	Tuneable photoconductivity and mobility enhancement in printed MoS 2 /graphene composites. <i>2D Materials</i> , 2017 , 4, 041006	5.9	10
280	Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensors. <i>Nanoscale</i> , 2017 , 9, 18507-18515	7.7	36
279	Robustness of Size Selection and Spectroscopic Size, Thickness and Monolayer Metrics of Liquid-Exfoliated WS2. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1700443	1.3	20
278	Cobalt hydroxide nanoflakes and their application as supercapacitors and oxygen evolution catalysts. <i>Nanotechnology</i> , 2017 , 28, 375401	3.4	25
277	Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate handling Li-ion battery cathodes. <i>Nano Energy</i> , 2017 , 39, 151-161	17.1	91
276	Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. <i>Chemistry of Materials</i> , 2017 , 29, 243-255	9.6	282
275	An investigation of the energy storage properties of a 2D ⊞MoO 3 -SWCNTs composite films. <i>2D Materials</i> , 2017 , 4, 015005	5.9	15
274	Production of monolayer-rich gold-decorated 2HWS2 nanosheets by defect engineering. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	18
273	Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. <i>Nano Energy</i> , 2016 , 28, 495-505	17.1	197
272	Liquid Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. <i>ACS Nano</i> , 2016 , 10, 8821-8	16.7	221
271	Relating the optical absorption coefficient of nanosheet dispersions to the intrinsic monolayer absorption. <i>Carbon</i> , 2016 , 107, 733-738	10.4	27
270	Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects. <i>Scientific Reports</i> , 2016 , 6, 19476	4.9	88
269	Preparation of Liquid-exfoliated Transition Metal Dichalcogenide Nanosheets with Controlled Size and Thickness: A State of the Art Protocol. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	14

268	Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. Small, 2016, 12, 272	-93	339
267	White Graphene undergoes Peroxidase Degradation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5506-11	16.4	51
266	Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared. <i>ACS Nano</i> , 2016 , 10, 6923-32	16.7	178
265	Production of Ni(OH)2 nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11046-11059	13	60
264	A comparison of catabolic pathways induced in primary macrophages by pristine single walled carbon nanotubes and pristine graphene. <i>RSC Advances</i> , 2016 , 6, 65299-65310	3.7	12
263	Materials science of graphene: a flagship perspective. 2D Materials, 2016, 3, 010401	5.9	14
262	High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. <i>Carbon</i> , 2016 , 99, 280-288	10.4	33
261	Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS2 Nanosheet and Nanosheet-Carbon Nanotube Composite Catalytic Electrodes. <i>ACS Nano</i> , 2016 , 10, 672-83	16.7	101
260	Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents. <i>Biomacromolecules</i> , 2016 , 17, 1845-53	6.9	25
259	Electrochemical Applications of Two-Dimensional Nanosheets: The Effect of Nanosheet Length and Thickness. <i>Chemistry of Materials</i> , 2016 , 28, 2641-2651	9.6	79
258	Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. <i>Nanoscale</i> , 2016 , 8, 5737-49	7.7	100
257	Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. <i>Nanoscale</i> , 2016 , 8, 4311-23	7.7	142
256	Graphene-MoS2nanosheet composites as electrodes for dye sensitised solar cells. <i>Materials Research Express</i> , 2016 , 3, 035007	1.7	10
255	A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. <i>ACS Nano</i> , 2016 , 10, 3702-13	16.7	320
254	Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. <i>Materials and Design</i> , 2016 , 94, 87-94	8.1	143
253	Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. <i>ACS Nano</i> , 2016 , 10, 1589-601	16.7	271
252	Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets. <i>Optical Materials Express</i> , 2016 , 6, 3159	2.6	33
251	2D-Crystal-Based Functional Inks. <i>Advanced Materials</i> , 2016 , 28, 6136-66	24	315

250	Photoluminescence from Liquid-Exfoliated WS2 Monomers in Poly(Vinyl Alcohol) Polymer Composites. <i>Advanced Functional Materials</i> , 2016 , 26, 1028-1039	15.6	62
249	White Graphene undergoes Peroxidase Degradation. <i>Angewandte Chemie</i> , 2016 , 128, 5596-5601	3.6	14
248	Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. <i>Science</i> , 2016 , 354, 1257-1260	33.3	517
247	All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. <i>Applied Physics Letters</i> , 2016 , 109, 023107	3.4	54
246	Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes. <i>Nanoscale</i> , 2016 , 8, 11698-706	7.7	9
245	Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes. <i>ACS Nano</i> , 2016 , 10, 5980-90	16.7	134
244	Sub-5 nm graphene nanopore fabrication by nitrogen ion etching induced by a low-energy electron beam. <i>Nanotechnology</i> , 2016 , 27, 195302	3.4	10
243	Revealing the nature of excitons in liquid exfoliated monolayer tungsten disulphide. <i>Nanotechnology</i> , 2016 , 27, 425701	3.4	10
242	Slow and fast absorption saturation of black phosphorus: experiment and modelling. <i>Nanoscale</i> , 2016 , 8, 17374-17382	7.7	33
241	Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1790-1794	4.8	6
240	Differentiating Defect and Basal Plane Contributions to the Surface Energy of Graphite Using Inverse Gas Chromatography. <i>Chemistry of Materials</i> , 2016 , 28, 6355-6366	9.6	21
239	Functionalization of Liquid-Exfoliated Two-Dimensional 2H-MoS2. <i>Angewandte Chemie</i> , 2015 , 127, 2676	5- 3.6 80	32
238	Large-Scale Production of Size-Controlled MoS2 Nanosheets by Shear Exfoliation. <i>Chemistry of Materials</i> , 2015 , 27, 1129-1139	9.6	310
237	Nanopatterning and Electrical Tuning of MoS2 Layers with a Subnanometer Helium Ion Beam. <i>Nano Letters</i> , 2015 , 15, 5307-13	11.5	138
236	Avoiding Resistance Limitations in High-Performance Transparent Supercapacitor Electrodes Based on Large-Area, High-Conductivity PEDOT:PSS Films. <i>ACS Applied Materials & District Science</i> , 2015, 7, 164	195 ⁵ 50	6 ¹⁰⁹
235	Inkjet printing of silver nanowire networks. ACS Applied Materials & amp; Interfaces, 2015, 7, 9254-61	9.5	199
234	Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. <i>ACS Nano</i> , 2015 , 9, 6018-30	16.7	232
233	Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. <i>Chemistry of Materials</i> , 2015 , 27, 3483-3493	9.6	144

(2014-2015)

232	Tunable nonlinear refractive index of two-dimensional MoS_2, WS_2, and MoSe_2 nanosheet dispersions [Invited]. <i>Photonics Research</i> , 2015 , 3, A51	6	117
231	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. <i>Nature Communications</i> , 2015 , 6, 8563	17.4	764
230	Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2. <i>Nanoscale</i> , 2015 , 7, 198-208	7.7	68
229	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. <i>Nanoscale</i> , 2015 , 7, 4598-810	7.7	2015
228	Low wavenumber Raman spectroscopy of highly crystalline MoSe2 grown by chemical vapor deposition. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2385-2389	1.3	21
227	Yielding and flow of highly concentrated, few-layer graphene suspensions. <i>Soft Matter</i> , 2015 , 11, 3159-	6<u>4</u>. 6	13
226	Boron nitride nanosheets as barrier enhancing fillers in melt processed composites. <i>Nanoscale</i> , 2015 , 7, 4443-50	7.7	45
225	Functionalization of liquid-exfoliated two-dimensional 2H-MoS2. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2638-42	16.4	189
224	Transition metal dichalcogenide growth via close proximity precursor supply. <i>Scientific Reports</i> , 2014 , 4, 7374	4.9	60
223	Enhancing the mechanical properties of BN nanosheet-polymer composites by uniaxial drawing. <i>Nanoscale</i> , 2014 , 6, 4889-95	7.7	70
222	Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. <i>Nature Materials</i> , 2014 , 13, 624-30	27	1627
221	Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks. <i>ACS Nano</i> , 2014 , 8, 4805-14	16.7	109
220	Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 925-932	7.1	217
219	Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors. <i>Chemistry of Materials</i> , 2014 , 26, 1751-1763	9.6	231
218	Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. <i>ACS Nano</i> , 2014 , 8, 8819-30	16.7	588
217	Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. <i>Nanoscale</i> , 2014 , 6, 10530-5	7.7	264
216	Reinforcement in melt-processed polymergraphene composites at extremely low graphene loading level. <i>Carbon</i> , 2014 , 78, 243-249	10.4	120
215	Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites. <i>ACS Applied Materials & amp; Interfaces,</i> 2014 , 6, 15113-21	9.5	37

214	Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. <i>Nature Communications</i> , 2014 , 5, 4576	17.4	350
213	Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. <i>Nanoscale</i> , 2014 , 6, 11810-9	7.7	200
212	Insulator-Conductor Type Transitions in Graphene-Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors. <i>Advanced Functional Materials</i> , 2014 , 24, 7580-7587	15.6	32
211	Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes. <i>ACS Nano</i> , 2014 , 8, 9567-79	16.7	82
210	Electrifying inks with 2D materials. <i>Nature Nanotechnology</i> , 2014 , 9, 738-9	28.7	96
209	Transparent Conductors: Insulator-Conductor Type Transitions in Graphene-Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors (Adv. Funct. Mater. 48/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 7562-7562	15.6	
208	Dibromocarbene Functionalization of Boron Nitride Nanosheets: Toward Band Gap Manipulation and Nanocomposite Applications. <i>Chemistry of Materials</i> , 2014 , 26, 7039-7050	9.6	57
207	Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions. <i>Journal of Applied Polymer Science</i> , 2013 , 127, 4483-4491	2.9	64
206	Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. <i>Nanoscale</i> , 2013 , 5, 581-7	7.7	156
205	A Technique To Pretreat Graphite Which Allows the Rapid Dispersion of Defect-Free Graphene in Solvents at High Concentration. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 19212-19218	3.8	46
204	Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 2013, 7, 9260-7	16.7	754
203	Helium ion microscopy of graphene: beam damage, image quality and edge contrast. <i>Nanotechnology</i> , 2013 , 24, 335702	3.4	65
202	Liquid Exfoliation of Layered Materials. <i>Science</i> , 2013 , 340, 1226419-1226419	33.3	2604
201	Photoconductivity of solution-processed MoS2 films. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6899	7.1	88
200	Density controlled conductivity of pristine graphene films. <i>Carbon</i> , 2013 , 64, 435-443	10.4	18
199	Reinforcement of metal with liquid-exfoliated inorganic nano-platelets. <i>Applied Physics Letters</i> , 2013 , 103, 163106	3.4	11
198	Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. <i>Carbon</i> , 2013 , 52, 363-371	10.4	211
197	Thermoelectric behavior of organic thin film nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 119-123	2.6	99

(2012-2013)

19	96	Development of MoS2ttnT Composite Thin Film from Layered MoS2 for Lithium Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 798-805	21.8	263
19	95	Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. <i>ACS Applied Materials & mp; Interfaces</i> , 2013 , 5, 1423-8	9.5	91
19	94	Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering. <i>Nanotechnology</i> , 2013 , 24, 265703	3.4	177
19	93	Prussian blue-functionalised graphene in the amperometric detection of peroxide and hydrazine 2013 , 01, 58-62		2
19	92	Polymer grafting to single-walled carbon nanotubes: effect of chain length on solubility, graft density and mechanical properties of macroscopic structures. <i>Small</i> , 2013 , 9, 552-60	11	36
19	91	Liquid exfoliation of defect-free graphene. Accounts of Chemical Research, 2013, 46, 14-22	24.3	720
19	90	Lateral size selection of surfactant-stabilised graphene flakes using size exclusion chromatography. <i>Chemical Physics Letters</i> , 2012 , 531, 169-172	2.5	19
18	89	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. <i>Nature Nanotechnology</i> , 2012 , 7, 699-712	28.7	10871
18	38	Autophagy induction by silver nanowires: a new aspect in the biocompatibility assessment of nanocomposite thin films. <i>Toxicology and Applied Pharmacology</i> , 2012 , 264, 451-61	4.6	57
18	³ 7	Approaching the theoretical limit for reinforcing polymers with graphene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1278-1282		145
18	36	Manipulating connectivity and electrical conductivity in metallic nanowire networks. <i>Nano Letters</i> , 2012 , 12, 5966-71	11.5	65
18	35	Percolation scaling in composites of exfoliated MoS2 filled with nanotubes and graphene. <i>Nanoscale</i> , 2012 , 4, 6260-4	7.7	71
18	84	The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter. <i>Nanotechnology</i> , 2012 , 23, 185201	3.4	107
18	83	Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 11393-	1318400	171
18	32	High quality dispersions of hexabenzocoronene in organic solvents. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12168-79	16.4	43
18	31	Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. <i>ACS Nano</i> , 2012 , 6, 3468-80	16.7	535
18	3o	Oxygen radical functionalization of boron nitride nanosheets. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18758-71	16.4	362
17	79	Using solution thermodynamics to describe the dispersion of rod-like solutes: application to dispersions of carbon nanotubes in organic solvents. <i>Nanotechnology</i> , 2012 , 23, 265604	3.4	15

178	Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. <i>ACS Nano</i> , 2012 , 6, 1732-41	16.7	80
177	Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. <i>Chemical Communications</i> , 2012 , 48, 6484-6	5.8	105
176	Magnetism in nanoscale graphite flakes as seen via electron spin resonance. <i>Physical Review B</i> , 2012 , 85,	3.3	9
175	High strength composite fibres from polyester filled with nanotubes and graphene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12907		40
174	Covalently functionalized hexagonal boron nitride nanosheets by nitrene addition. <i>Chemistry - A European Journal</i> , 2012 , 18, 10808-12	4.8	64
173	Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size. <i>Chemistry of Materials</i> , 2012 , 24, 2414-2421	9.6	437
172	Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. <i>Carbon</i> , 2012 , 50, 470-475	10.4	240
171	Increased response/recovery lifetimes and reinforcement of polyaniline nanofiber films using carbon nanotubes. <i>Carbon</i> , 2012 , 50, 1447-1454	10.4	26
170	Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. <i>Carbon</i> , 2012 , 50, 4489-4494	10.4	60
169	Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. <i>Composites Science and Technology</i> , 2012 , 72, 235-242	8.6	36
168	Flexible, transparent dielectric capacitors with nanostructured electrodes. <i>Applied Physics Letters</i> , 2012 , 101, 103106	3.4	33
167	Spray deposition of Silver Nanowire transparent conductive networks 2012 ,		1
166	DMF-exfoliated graphene for electrochemical NADH detection. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7747-50	3.6	74
165	Solvent-exfoliated graphene at extremely high concentration. <i>Langmuir</i> , 2011 , 27, 9077-82	4	280
164	Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5422-5428	3.8	390
163	The effects of percolation in nanostructured transparent conductors. MRS Bulletin, 2011, 36, 774-781	3.2	193
162	Two-dimensional nanosheets produced by liquid exfoliation of layered materials. <i>Science</i> , 2011 , 331, 568-71	33.3	5221
161	Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. <i>Applied Physics Letters</i> , 2011 , 99, 183307	3.4	136

(2010-2011)

160	Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites. <i>Composites Science and Technology</i> , 2011 , 71, 1030-1038	8.6	73
159	Tuning the mechanical properties of composites from elastomeric to rigid thermoplastic by controlled addition of carbon nanotubes. <i>Small</i> , 2011 , 7, 1579-86	11	30
158	Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. <i>Small</i> , 2011 , 7, 2621-8	11	254
157	The Effect of Nanotube Content and Orientation on the Mechanical Properties of PolymerNanotube Composite Fibers: Separating Intrinsic Reinforcement from Orientational Effects. <i>Advanced Functional Materials</i> , 2011 , 21, 364-371	15.6	59
156	Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. <i>Advanced Materials</i> , 2011 , 23, 4178-82	24	208
155	Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. <i>Advanced Materials</i> , 2011 , 23, 3944-8	24	888
154	High-Performance Transparent Conductors from Networks of Gold Nanowires. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 3058-3062	6.4	71
153	Transparent conducting films from NbSe3 nanowires. <i>Nanotechnology</i> , 2011 , 22, 285202	3.4	6
152	Nitrogen assisted etching of graphene layers in a scanning electron microscope. <i>Applied Physics Letters</i> , 2011 , 98, 243117	3.4	48
151	Inverting Polyurethanes Synthesis: Effects on Nano/Micro-Structure and Mechanical Properties. <i>Soft Materials</i> , 2010 , 9, 79-93	1.7	21
150	Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7864		202
149	The importance of repulsive potential barriers for the dispersion of graphene using surfactants. <i>New Journal of Physics</i> , 2010 , 12, 125008	2.9	218
148	New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 231-237	3.8	101
147	Selective Mechanical Reinforcement of Thermoplastic Polyurethane by Targeted Insertion of Functionalized SWCNTs. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11401-11408	3.8	41
146	Dispersion and Exfoliation of Nanotubes with Synthetic Oligonucleotides: Variation of Dispersion Efficiency and Oligo-Nanotube Interaction with Base Type. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11741-11747	3.8	16
145	Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. <i>Langmuir</i> , 2010 , 26, 3208-13	4	481
144	High-concentration, surfactant-stabilized graphene dispersions. ACS Nano, 2010, 4, 3155-62	16.7	826
143	Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?. <i>ACS Nano</i> , 2010 , 4, 2713-20	16.7	462

142	Improvement of transparent conducting nanotube films by addition of small quantities of graphene. <i>ACS Nano</i> , 2010 , 4, 4238-46	16.7	102
141	Control of Optical Limiting of Carbon Nanotube Dispersions by Changing Solvent Parameters. Journal of Physical Chemistry C, 2010 , 114, 6148-6156	3.8	39
140	Strong dependence of mechanical properties on fiber diameter for polymer-nanotube composite fibers: differentiating defect from orientation effects. <i>ACS Nano</i> , 2010 , 4, 6989-97	16.7	68
139	Very thin transparent, conductive carbon nanotube films on flexible substrates. <i>Applied Physics Letters</i> , 2010 , 97, 023114	3.4	105
138	Size effects and the problem with percolation in nanostructured transparent conductors. <i>ACS Nano</i> , 2010 , 4, 7064-72	16.7	269
137	Nanotube surfactant design: the versatility of water-soluble perylene bisimides. <i>Advanced Materials</i> , 2010 , 22, 788-802	24	128
136	Enhanced adsorption affinity of anionic perylene-based surfactants towards smaller-diameter SWCNTs. <i>Chemistry - A European Journal</i> , 2010 , 16, 13185-92	4.8	22
135	The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties. <i>Carbon</i> , 2010 , 48, 2825-2830	10.4	94
134	Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. <i>Carbon</i> , 2010 , 48, 4035-4041	10.4	249
133	Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. <i>Small</i> , 2010 , 6, 458-64	11	342
132	High-concentration solvent exfoliation of graphene. Small, 2010, 6, 864-71	11	810
131	Liquid-Phase Exfoliation of Nanotubes and Graphene. Advanced Functional Materials, 2009, 19, 3680-36	9Б 5.6	518
130	Broadband Nonlinear Optical Response of Graphene Dispersions. <i>Advanced Materials</i> , 2009 , 21, 2430-24	135	428
129	Preparation of buckypaper-copper composites and investigation of their conductivity and mechanical properties. <i>ChemPhysChem</i> , 2009 , 10, 774-7	3.2	15
128	Carbon-nanotube-polymer nanocomposites for field-emission cathodes. <i>Small</i> , 2009 , 5, 826-31	11	65
127	High-strength, high-toughness composite fibers by swelling Kevlar in nanotube suspensions. <i>Small</i> , 2009 , 5, 466-9	11	78
126	Quantitative comparison of ultracentrifuged and diluted single walled nanotube dispersions; differences in dispersion quality. <i>Chemical Physics Letters</i> , 2009 , 474, 122-126	2.5	17
125	Development of transparent, conducting composites by surface infiltration of nanotubes into commercial polymer films. <i>Carbon</i> , 2009 , 47, 1983-1988	10.4	33

(2008-2009)

124	Mechanical properties of individual electrospun polymer-nanotube composite nanofibers. <i>Carbon</i> , 2009 , 47, 2253-2258	10.4	44
123	The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. <i>Carbon</i> , 2009 , 47, 2466-2473	10.4	155
122	Upper bound for the conductivity of nanotube networks. <i>Applied Physics Letters</i> , 2009 , 95, 123106	3.4	25
121	Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. <i>ACS Nano</i> , 2009 , 3, 1767-74	16.7	1343
120	High-pressure Raman spectroscopy of graphene. <i>Physical Review B</i> , 2009 , 80,	3.3	168
119	Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3611-20	16.4	1821
118	Electrical connectivity in single-walled carbon nanotube networks. <i>Nano Letters</i> , 2009 , 9, 3890-5	11.5	377
117	Effects of Ambient Conditions on SolventNanotube Dispersions: Exposure to Water and Temperature Variation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1260-1266	3.8	16
116	Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. <i>ACS Nano</i> , 2009 , 3, 2340-50	16.7	298
115	Polymer Reinforcement with Kevlar-Coated Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20184-20192	3.8	36
114	Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. <i>ACS Nano</i> , 2009 , 3, 714-20	16.7	256
113	High-yield production of graphene by liquid-phase exfoliation of graphite. <i>Nature Nanotechnology</i> , 2008 , 3, 563-8	28.7	4715
112	Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. <i>Scripta Materialia</i> , 2008 , 58, 69-72	5.6	49
111	A new solution to graphene production. SPIE Newsroom, 2008,		1
110	Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersion Quality and Its Correlation with Zeta Potential. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10692-10699	3.8	315
109	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Need for Ultracentrifugation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 972-977	3.8	68
108	Kevlar coated carbon nanotubes for reinforcement of polyvinylchloride. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5585		41
107	Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12734-44	16.4	107

106	High Quality Dispersions of Functionalized Single Walled Nanotubes at High Concentration. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 3519-3524	3.8	55
105	Spontaneous exfoliation of single-walled carbon nanotubes dispersed using a designed amphiphilic peptide. <i>Biomacromolecules</i> , 2008 , 9, 598-602	6.9	29
104	Towards tough, yet stiff, composites by filling an elastomer with single-walled nanotubes at very high loading levels. <i>Nanotechnology</i> , 2008 , 19, 415709	3.4	29
103	Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives. <i>Nanotechnology</i> , 2008 , 19, 485702	3.4	6
102	The relationship between network morphology and conductivity in nanotube films. <i>Journal of Applied Physics</i> , 2008 , 104, 044302	2.5	106
101	Strong, Tough, Electrospun PolymerNanotube Composite Membranes with Extremely Low Density. <i>Advanced Functional Materials</i> , 2008 , 18, 2618-2624	15.6	55
100	Towards Solutions of Single-Walled Carbon Nanotubes in Common Solvents. <i>Advanced Materials</i> , 2008 , 20, 1876-1881	24	299
99	Quantifying the contributions of inner-filter, re-absorption and aggregation effects in the photoluminescence of high-concentration conjugated polymer solutions. <i>Journal of Luminescence</i> , 2008 , 128, 31-40	3.8	23
98	On the factors controlling the mechanical properties of nanotube films. <i>Carbon</i> , 2008 , 46, 41-47	10.4	44
97	Toughening of artificial silk by incorporation of carbon nanotubes. <i>Biomacromolecules</i> , 2007 , 8, 3973-6	6.9	21
96	Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2351		65
95	Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug Ebutyrolactone. <i>Nanotechnology</i> , 2007 , 18, 45570	5 ^{3.4}	43
94	Exfoliation of Mo6SxI9-xnanowires in common solvents. <i>EPJ Applied Physics</i> , 2007 , 37, 149-159	1.1	15
93	Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers. <i>Advanced Functional Materials</i> , 2007 , 17, 2918-2924	15.6	50
92	Observation of van der Waals Driven Self-Assembly of MoSI Nanowires into a Low-Symmetry Structure Using Aberration-Corrected Electron Microscopy. <i>Advanced Materials</i> , 2007 , 19, 543-547	24	41
91	Observation of Percolation-like Scaling IFar from the Percolation Threshold In High Volume Fraction, High Conductivity Polymer-Nanotube Composite Films. <i>Advanced Materials</i> , 2007 , 19, 4443-44	4 ² / ¹	84
90	Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). <i>Composites Science and Technology</i> , 2007 , 67, 1640-1649	8.6	96
89	The effect of solvent choice on the mechanical properties of carbon nanotubepolymer composites. <i>Composites Science and Technology</i> , 2007 , 67, 3158-3167	8.6	48

88	Nonlinear optical response of Mo6S4.5I4.5 nanowires. <i>Chemical Physics Letters</i> , 2007 , 435, 109-113	2.5	15
87	Dispersion and purification of Mo6S3I6 nanowires in organic solvents. <i>Journal of Applied Physics</i> , 2007 , 101, 014317	2.5	33
86	Optical properties of Mo6S3I6 nanowires. <i>Physical Review B</i> , 2007 , 76,	3.3	13
85	Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 66-74	3.8	89
84	Observation of extremely low percolation threshold in MoSI nanowire/polymer composites. <i>Scripta Materialia</i> , 2006 , 54, 417-420	5.6	33
83	Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)-Based Composites by the Incorporation of Poly(methyl methacrylate)-Functionalized Nanotubes. <i>Advanced Functional Materials</i> , 2006 , 16, 1608-1614	15.6	196
82	Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Advanced Materials, 2006, 18, 689-70	0624	1399
81	Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4206		81
80	Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15708-18	3.4	302
79	Multiwalled carbon nanotube nucleated crystallization and reinforcement in poly (vinyl alcohol) composites. <i>Synthetic Metals</i> , 2006 , 156, 332-335	3.6	49
78	Three-dimensional Characterisation of Nanomaterials Using Aberration-Corrected STEM. <i>Microscopy and Microanalysis</i> , 2006 , 12, 1338-1339	0.5	
77	Mo6S4.5I4.5Nanowires: Structure Studies by HRTEM and Aberration Corrected STEM. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 260-263	0.3	2
76	Quantification of ADF STEM images of molybdenum chalcogenide nanowires. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 280-283	0.3	3
75	Fabrication of stable dispersions containing up to 70% individual carbon nanotubes in a common organic solvent. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3058-3062	1.3	37
74	Physical properties of novel free-standing polymerflanotube thin films. <i>Carbon</i> , 2006 , 44, 1525-1529	10.4	35
73	Small but strong: A review of the mechanical properties of carbon nanotube p olymer composites. <i>Carbon</i> , 2006 , 44, 1624-1652	10.4	3269
72	Debundling by dilution: Observation of significant populations of individual MoSI nanowires in high concentration dispersions. <i>Chemical Physics Letters</i> , 2006 , 425, 89-93	2.5	27
71	Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling. <i>Polymer</i> , 2006 , 47, 8556-8561	3.9	207

FFECT OF SOLVENT AND DISPERSANT ON THE BUNDLE DISSOCIATION OF SINGLE-WALLED CARBON NANOTUBES. *NATO Science Series Series II, Mathematics, Physics and Chemistry,* **2006**, 211-212

69	Solubility of Mo6S4.5I4.5 nanowires in common solvents: a sedimentation study. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 7124-33	3.4	102
68	Optical Absorption and Photo-Luminescence Spectra of Molecular van der Waals Systems: Frenkel Exciton Resonance Effects. <i>Macromolecular Symposia</i> , 2005 , 230, 116-125	0.8	1
67	Effect of solvent and dispersant on the bundle dissociation of single-walled carbon nanotube 2005,		3
66	Biomolecules as selective dispersants for carbon nanotubes. <i>Carbon</i> , 2005 , 43, 1879-1884	10.4	62
65	Solubility of Mo6S4.5I4.5 nanowires. <i>Chemical Physics Letters</i> , 2005 , 401, 13-18	2.5	53
64	Effect of Solvents and Dispersants on the Bundle Dissociation of Single-walled Carbon Nanotube. <i>AIP Conference Proceedings</i> , 2005 ,	О	4
63	Characterisation of Single-walled Carbon Nanotube Bundle Dissociation in Amide Solvents. <i>AIP Conference Proceedings</i> , 2005 ,	О	1
62	Charge transport effects in field emission from carbon nanotube-polymer composites. <i>Applied Physics Letters</i> , 2005 , 87, 263105	3.4	77
61	Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. <i>Physical Review B</i> , 2005 , 72,	3.3	70
60	Physical mechanism for the mechanical reinforcement in nanotube-polymer composite materials. <i>Physical Review B</i> , 2005 , 71,	3.3	24
59	Carbon Nanotube Nucleated Polymer Crystallization. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2005 , 13, 431-434	1.8	12
58	Alternating and direct current characterization and photoinduced absorption studies of modified conjugated polymer thin films. <i>Journal of Applied Physics</i> , 2004 , 95, 6138-6144	2.5	7
57	Geometric constraints in the growth of nanotube-templated polymer monolayers. <i>Applied Physics Letters</i> , 2004 , 84, 798-800	3.4	41
56	A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. Journal of the American Chemical Society, 2004 , 126, 10226-7	16.4	210
55	Multifunctional Carbon Nanotube Composite Fibers. <i>Advanced Engineering Materials</i> , 2004 , 6, 801-804	3.5	55
54	High Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. <i>Advanced Functional Materials</i> , 2004 , 14, 791-798	15.6	538
53	Carbon-nanotube nucleated crystallinity in a conjugated polymer based composite. <i>Chemical Physics Letters</i> , 2004 , 391, 329-333	2.5	81

(2002-2004)

52	Binding Kinetics and SWNT Bundle Dissociation in Low Concentration Polymer Nanotube Dispersions. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3446-3450	3.4	59
51	Air-stable monodispersed Mo6S3I6nanowires. <i>Nanotechnology</i> , 2004 , 15, 635-638	3.4	107
50	Continuous carbon nanotube composite fibers: properties, potential applications, and problems. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1		203
49	Reinforcement of Polymers with Carbon Nanotubes: IThe Role of Nanotube Surface Area. <i>Nano Letters</i> , 2004 , 4, 353-356	11.5	414
48	Mechanical and thermal properties of carbon-nanotube-reinforced polymer composites 2003 , 4876, 67	76	3
47	Carbon Nanotube Composites as Efficient Charge Transport Media in Organic Optoelectronic Devices 2003 , 4876, 338		
46	Intermolecular vibronic coupling in self-assembling molecular nanowires of hexabenzocoronene derivatives 2003 , 4991, 460		1
45	Third-order nonlinear optical response and nonlinear photoluminescence in multiwalled carbon nanotubes 2003 , 4876, 649		
44	Characterization of nanotube-based artificial muscle materials 2003,		2
10			
43	Optical limiting properties of carbon nanostructure and polymer dispersions 2003 , 4991, 194		
43	Optical limiting properties of carbon nanostructure and polymer dispersions 2003 , 4991, 194 Super-tough carbon-nanotube fibres. <i>Nature</i> , 2003 , 423, 703	50.4	1256
		50.4	1256
42	Super-tough carbon-nanotube fibres. <i>Nature</i> , 2003 , 423, 703 Selective Interaction in a PolymerBingle-Wall Carbon Nanotube Composite. <i>Journal of Physical</i>		
42	Super-tough carbon-nanotube fibres. <i>Nature</i> , 2003 , 423, 703 Selective Interaction in a PolymerBingle-Wall Carbon Nanotube Composite. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 478-482 Optical Spectroscopy of Isolated and Aggregate Hexabenzocoronene Derivatives: A Study of	3.4	120
42 41 40	Super-tough carbon-nanotube fibres. <i>Nature</i> , 2003 , 423, 703 Selective Interaction in a PolymerBingle-Wall Carbon Nanotube Composite. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 478-482 Optical Spectroscopy of Isolated and Aggregate Hexabenzocoronene Derivatives: A Study of Self-Assembling Molecular Nanowires. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 37-43 Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. <i>Optics</i>	3.4	120 46
42 41 40 39	Super-tough carbon-nanotube fibres. <i>Nature</i> , 2003 , 423, 703 Selective Interaction in a PolymerBingle-Wall Carbon Nanotube Composite. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 478-482 Optical Spectroscopy of Isolated and Aggregate Hexabenzocoronene Derivatives: A Study of Self-Assembling Molecular Nanowires. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 37-43 Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. <i>Optics Letters</i> , 2003 , 28, 266-8 Nonlinear optical response of multiwalled carbon-nanotube dispersions. <i>Journal of the Optical</i>	3·4 3·4	120 46 35
42 41 40 39 38	Super-tough carbon-nanotube fibres. <i>Nature</i> , 2003 , 423, 703 Selective Interaction in a PolymerBingle-Wall Carbon Nanotube Composite. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 478-482 Optical Spectroscopy of Isolated and Aggregate Hexabenzocoronene Derivatives: A Study of Self-Assembling Molecular Nanowires. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 37-43 Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. <i>Optics Letters</i> , 2003 , 28, 266-8 Nonlinear optical response of multiwalled carbon-nanotube dispersions. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2003 , 20, 49 Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle	3·4 3·4 1.7	120 46 35 63

34	Distributed response analysis of conductive behavior in single molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99 Suppl 2, 6514-7	11.5	5
33	Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer 2002 ,		1
32	High-Yield, Nondestructive Purification and Quantification Method for Multiwalled Carbon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3087-3091	3.4	89
31	A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 2210-2216	3.4	204
30	Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. <i>Journal of Applied Physics</i> , 2002 , 92, 4024-4030	2.5	652
29	Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. <i>Applied Physics Letters</i> , 2002 , 81, 5123-5125	3.4	550
28	Purification and processing of carbon nanotubes using self-assembly and selective interaction with a semiconjugated polymer 2001 , 4468, 112		
27	Nanotube Content in Arc Generated Carbon Powder. <i>Monatshefte Fil Chemie</i> , 2001 , 132, 53-61	1.4	5
26	Controlling the optical properties of a conjugated co-polymer through variation of backbone isomerism and the introduction of carbon nanotubes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2001 , 144, 31-41	4.7	37
25	Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interactions. <i>Chemical Physics Letters</i> , 2001 , 350, 27-32	2.5	25
24	Nonlinear photoluminescence from multiwalled carbon nanotubes 2001 , 4461, 56		1
23	Complex nano-assemblies of polymers and carbon nanotubes. <i>Nanotechnology</i> , 2001 , 12, 187-190	3.4	35
22	Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. <i>Journal of Applied Physics</i> , 2001 , 90, 969-975	2.5	98
21	Microscopy studies of nanotube-conjugated polymer interactions. Synthetic Metals, 2001, 121, 1225-12	22 <u>6</u> .6	60
20	A functional conjugated polymer to process, purify and selectively interact with single wall carbon nanotubes. <i>Synthetic Metals</i> , 2001 , 121, 1217-1218	3.6	45
19	High electron injection currents from a nanotube composite in an organic heterojunction. <i>Synthetic Metals</i> , 2001 , 121, 1227-1228	3.6	6
18	Solubility and purity of nanotubes in arc discharge carbon powder. Synthetic Metals, 2001 , 121, 1229-13	2 30 6	12
17	A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes. <i>Synthetic Metals</i> , 2001 , 121, 1683-1684	3.6	29

LIST OF PUBLICATIONS

16	Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers. <i>Synthetic Metals</i> , 2001 , 119, 151-152	3.6	14
15	Nonlinear photoluminescence in multiwall carbon nanotubes. <i>Synthetic Metals</i> , 2001 , 119, 641-642	3.6	10
14	MRS 2001 (Boston): Design and Quantification of a Nanoscale Field Effect Transistor: Distributed Response Analysis for Investigating Conductive Behaviour <i>Materials Research Society Symposia Proceedings</i> , 2001 , 706, 1		
13	Purity and Solubility of Nanotubes in Arc Discharge Carbon Powder. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 633, 1361		
12	Solubility of carbon nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 531		
11	Phase Separation of Carbon Nanotubes and Turbostratic Graphite Using a Functional Organic Polymer. <i>Advanced Materials</i> , 2000 , 12, 213-216	24	162
10	Observation of site selective binding in a polymer nanotube composite. <i>Journal of Materials Science Letters</i> , 2000 , 19, 2239-2241		55
9	Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes. <i>Journal of Chemical Physics</i> , 2000 , 113, 9788-9793	3.9	32
8	Measurement of nanotube content in pyrolytically generated carbon soot. <i>Chemical Communications</i> , 2000 , 2001-2002	5.8	13
7	Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 10012-10016	3.4	234
6	Evolution and evaluation of the polymer/nanotube composite. <i>Synthetic Metals</i> , 1999 , 103, 2559-2562	3.6	80
5	Physical Doping of a Conjugated Polymer with Carbon Nanotubes. <i>Synthetic Metals</i> , 1999 , 102, 1174-11	7 <u>\$</u> .6	84
4	Optical Absorption and Fluorescence of a Multi-walled Nanotube-Polymer Composite. <i>Synthetic Metals</i> , 1999 , 102, 1176-1177	3.6	34
3	A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics. <i>Advanced Materials</i> , 1998 , 10, 1091-1093	24	539
2	Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. <i>Physical Review B</i> , 1998 , 58, R7492-R7495	3.3	362
1	The electrical conductivity of solution-processed nanosheet networks. <i>Nature Reviews Materials</i> ,	73.3	21