Sadia Majeed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2231295/publications.pdf

Version: 2024-02-01

14	243	7	9
papers	citations	h-index	g-index
15	15	15	329
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sulfate-mediated Drought Tolerance in Maize Involves Regulation at Physiological and Biochemical Levels. Scientific Reports, 2020, 10, 1147.	3.3	46
2	Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. Plant Physiology and Biochemistry, 2020, 155, 147-160.	5.8	37
3	Effect of exogenous nitric oxide on sulfur and nitrate assimilation pathway enzymes in maize (Zea) Tj ETQq $1\ 1\ 0$.784314 r 2.1	gBT /Overloc
4	Seed priming with <scp>KNO₃</scp> mediates biochemical processes to inhibit lead toxicity in maize (<i>Zea mays</i> L.). Journal of the Science of Food and Agriculture, 2017, 97, 4780-4789.	3.5	28
5	Cross Talk between Nitric Oxide and Phytohormones Regulate Plant Development during Abiotic Stresses. , 0, , .		21
6	Pretreatment with selenium and zinc modulates physiological indices and antioxidant machinery to improve drought tolerance in maize (Zea mays L.). South African Journal of Botany, 2021, 138, 209-216.	2.5	19
7	Sulfate-Based Fertilizers Regulate Nutrient Uptake, Photosynthetic Gas Exchange, and Enzymatic Antioxidants to Increase Sunflower Growth and Yield Under Drought Stress. Journal of Soil Science and Plant Nutrition, 2021, 21, 2229-2241.	3.4	18
8	Role of Mineral Nutrition in Improving Drought and Salinity Tolerance in Field Crops., 2020, , 129-147.		13
9	Physiological insights into sulfate and selenium interaction to improve drought tolerance in mung bean. Physiology and Molecular Biology of Plants, 2021, 27, 1073-1087.	3.1	9
10	Silicon Seed Priming Combined with Foliar Spray of Sulfur Regulates Photosynthetic and Antioxidant Systems to Confer Drought Tolerance in Maize (Zea mays L.). Silicon, 2022, 14, 7901-7917.	3.3	7
11	Mitigation of drought stress by foliar application of salicylic acid and potassium in mungbean (<italic>Vigna radiata</italic> L.). Legume Research, 2016, 39, .	0.1	5
12	Use of Osmolytes in Improving Abiotic Stress Tolerance to Wheat (Triticum aestivum L.). , 2019, , 497-519.		3
13	Sulfur-Mediated Physiological and Biochemical Alterations to Improve Abiotic Stress Tolerance in Food Crops., 2020,, 415-441.		2
14	Interplay between selenium and mineral elements to improve plant growth and development., 2021,, 221-236.		1